INSTRUCTION SET SUMMARY

1111011sw 00000mmm disp data

Format Examples Microprocessor Clocks
TEST reg,imm TEST BX,3
TEST Di,1AH
TEST DH,44H
TEST EDX,1AB345H 80286 3
TEST S1,1834H
80386 2
80486 1
Pentium 1or2
TEST mem,imm | TEST DATAS,3
TEST BYTE PTRIEDI],1AH
TEST DADDY,34H
TEST LIST,’A’ 80286 6 '
TEST TOAD,1834H
80386 5
80486 2
Pentium 1or2
1010100w data
Format Examples Microprocessor Clocks
TEST acc,imm TEST AL,3
TEST AX,1AH
TEST EAX,34H

80286 3
80386 2
80486 1

Pentium

701

702 APPENDIX C INSTRUCTION SET SUMMARY

VERRNVERW Verify read/write
00001111 00000000 00100mmm disp oD I T SZAPC
Format Examples Microprocessor Clocks
VERR reg VERR CX 8086 —_
VERR DX
VERR DI 8088 -
80286 14
80386 10
80486 11
Pentium 7
VERR mem VERR DATAJ 8086 —
VERR TESTB
8088 —
80286 16
80386 11
80486 11
Pentium 7
00001111 00000000 0o101mmm disp
Format Examples Microprocessor Clocks
VERW reg VERW CX 8086 —
VERW DX
VERW DI 8088 -
80286 14
80386 15
80486 11
Pentium 7
YERW mem VERW DATAJ 8086 —
: S VERW TESTB
8088 —
80286 16
80386 16
80486 11
Pentium 7

INSTRUCTION SET SUMMARY

10011011

Example Microprocessor Clocks

WAIT ' ‘

FWAIT
80286 3
80386 6
80486 6
Pentium 1

WBINVD Write-back cache invalidate data cache

00001111 00001001

Example Microprocessor Clocks

WBINVD 8086 —
8088 —
80286 —
80386 —
80486 -5
Pentium 2000+

WRMSR Write to model specific register

00001111 00110000

Example Microprocessor Clocks

WRMSR 8086 —
8088 —
80286 —
80386 —
80486 —
Pentium 3045

703

704 APPENDIX C INSTRUCTION SET SUMMARY

XADD Exchange and add
00001111 1100000w 11rrrrer oD I T SZAPC
Format Examples Microprocessor Clocks
XADD reg,reg XADD EBX,ECX 8086 —
XADD EDX,EAX
XADD EDI,EBP 8088 —
80286 -
80386 —
80486 3
Pentium 3or4
00001111 1100000w oorrrmmm disp
Format Examples Microprocessor Clocks
XADD mem,reg XADD DATAS,ECX 8086 —
XADD [EBX],EAX
XADD [ECX+4],EBP 8088 —
- 80286 -
80386 —
80486 4
Pentium 3or4
100001 1w oorrrmmm
Format Examples Microprocessor Clocks
XCHG regreg | XCHG CL,DL '
XCHG BX,DX
XCHG DH,CL . L e
XCHG EBP,EBX 80286 3
XCHG EAX,EDI
80386 3
80486 3
Pentium 3

11010111
Example

Microprocessor

XLAT

INSTRUCTION SET SUMMARY
XCHG mem,reg XCHG DATAJ,CL
reg,mem XCHG BYTES,CX
XCHG NUMBS,ECX
XCHG [EAX],CX 80286 5
XCHG CL,POPS
80386 5
80486 5
Pentium 3
10010reg
Format Examples Microprocessor Clocks
XCHG acc,reg XCHG BX,AX
reg,acc XCHG AX,DI
XCHG DH,AL Z
XCHG EDX,EAX 80286 3
XCHG SI,AX
80386 3
80486 3
Pentium 2

Clocks

80286 5
80386 3
80486 4
Pentium 4

705

706 APPENDIX C INSTRUCTION SET SUMMARY

000110dw oorrrmmm disp

oODI T

SZAPC
+ a9 s g

Clocks

Format Examples Microprocessor
XOR reg,reg XOR CL,DL
XOR AX,DX
XOR CH,CL
XOR EAX,EBX 80286 2
XOR ESI,EDI
80386 2
80486 1
Pentium 1or2
XOR mem,reg XOR DATAJ,CL
XOR BYTES,CX
XOR NUMBS,ECX
XOR [EAX],CX 80286 7
80386 6
80486 3
Pentium 1o0r3
XOR reg,mem XOR CL,DATAL
XOR CX,BYTES
XOR ECX,NUMBS

80386 7
80486 2
Pentium tor2
100000sw oo110mmm disp data
Format Examples Microprocessor Clocks
XOR reg,imm XOR CX,3
XOR DI,1AH
XOR DL,34H
XOR EDX,1345H 80286 3
XOR CX,1834H
80386 2
80486 1
Pentium 1or3

INSTRUCTION SET SUMMARY

XOR mem,imm

XOR DATAS,3

XOR BYTE PTRIEDI},1AH

XOR DADDY,34H
XOR LIST,’A’
XOR TOAD, 1834H 60286 7
80386 7
80486 3
Pentium 1or3
0010101w data
Format Examples Microprocessor Clocks
XOR acc,imm XOR AL,3 :
XOR AX,1AH
XOR EAX,34H

80286 3
80386 2
80486 1

Pentium

707

APPENDIX D

The Arithmetic Coprocessor: Data Formats,
Instructions, and Programming

DATA FORMATS FOR THE ARITHMETIC COPROCESSOR

This section of the text presents the types of data used with all arithmetic coprocessor family-members. (See Table
D-1 for a listing of all Intel microprocessors and their companion coprocessors.) These data types include signed-
integer, BCD, and floating-point. Each has a specific use in a system, and many systems require all three data
types. Note that assembly language programming with the coprocessor is often limited to modifying the coding
generated by a high-level language such as C/C++. In order to accomplish any such modification, the instruction
set and some basic programming concepts are required, which are presented in this appendix.

Signed Integers

The signed integers used with the coprocessor are the same as
those described in Chapter 1. When used with the arithmetic co-
processor, signed integers are 16- (word), 32- (short integer), or
64-bits (long integer) wide. The long integer is new to the co-
processor and is not described in Chapter 1, but the principles are
the same. Conversion between decimal and signed-integer format
is handled in exactly the same manner as for the signed integers
described in Chapter 1. As you will recall, positive numbers are
stored in true form with a leftmost sign-bit of 0, and negative
numbers are stored in two’s complement form with a leftmost
sign-bit of 1.

The word integers range in value from 32,768 to +32,767,
the short integer range is +2 x 10*, and the long integer range is
+9 x 10*!8 Integer data types are found in some applications that
use the arithmetic coprocessor. See Figure D-1, which shows
these three forms of signed-integer data.

Data are stored in memory using the same assembler direc-
tives described and used in earlier chapters. The DW directive
defines words, DD defines short integers, and DQ defines long

708

TABLE D-1 Microprocessor and Intel
coprocessor compatibility.
Microprocessor Coprocessor
8086 8087
8088 8087
80186 80187
80188 80187
80286 80287
80386SX 80387SX
80386DX 80387DX
80486SX 80487SX
80486DX Built into microprocessor
Pentium Built into microprocessor
Pentium Pro Built into microprocessor
Pentium i Built into microprocessor
Pentium il Built into microprocessor
Pentium 4 Built into microprocessor

DATA FORMATS FOR THE ARITHMETIC COPROCESSOR

15 0
S

Magnitude
(a)

31

709

(7]

Magnitude

(b)

63

Magnitude

()
Note: S = sign-bit

FIGURE D-1
(a) word, (b) short, and (c) long.

79

Integer formats for the 80X87 family of arithmetic coprocessors:

Sign

byte|D17

D16|D15|D14|D13|D12

D11

D10| D9 |D8 | D7 |D6 | D5| D4 D3 | D2 | D1 | DO

FIGURE D-2 BCD data format for the 80X87 family of arithmetic coprocessors.

integers. Example D1 shows how several different sizes of signed integers are defined for use by the assembler and arith-

metic coprocessor.

EXAMPLE D-1

0000 0002 DATAL DW
0002 FFDE DATA2 DW
0004 000004D2 DATA3 DD
0008 FFFFFFOC . DATA4 DD
000C 0000000000005BA0O DATAS DQ
0014 FFFFFFFFFFFFFF86 DATA6 DQ

Binary-coded Decimal (BCD)

+2 ;16-bit integer
-34 ;16-bit integer
+1234 ;short integer
-100 ;short integer
+23456 ;long integer
-122 ;long integer

The binary-coded decimal (BCD) form requires 80 bits of memory. Each number is stored as an 18-digit packed
integer in nine bytes of memory as two digits per byte. The tenth byte contains only a sign bit for the 18-digit
signed BCD number. Figure D-2 shows the format of the BCD number used with the arithmetic coprocessor. Note
that both positive and negative numbers are stored in true form and never in 10’s complement form. The DT di-
rective stores BCD data in the memory as illustrated in Example D-2.

EXAMPLE D-2

0000 DATALl DT 200
00000000000000000200

000A DATA2 DT -10
80000000000000000010

0014 DATA3 DT 10020

00000000000000010020

;200 decimal stored as BCD
;=10 decimal stored as BCD

;10,020 decimal stored as BCD

710 APPENDIX D THE ARITHMETIC COPROGESSOR: DATA FORMATS, INSTRUCTIONS, AND PROGRAMMING

Floating-point

Floating-point numbers are often called real numbers because they hold signed integers, fractions, and mixed
numbers. A floating-point number has three parts: a sign-bit, a biased exponent, and a significand. Floating-point
numbers are written in scientific binary notation. The Intel family of arithmetic coprocessors supports three types
of floating-point numbers: short (32 bits), long (64 bits), and temporary (80 bits). See Figure D-3 for the three
forms of the floating-point number. Please note that the short form is also called a single-precision number and the
long form is called a double-precision number. Sometimes the 80-bit temporary form is called an extended-preci-
sion number. The floating-point numbers and the operations performed by the arithmetic coprocessor conform to
the IEEE-754 standard, as adopted by all major personal computer software producers. This includes Microsoft,
which in 1995 stopped supporting the Microsoft floating-point format and also the ANSI floating-point standard
that is popular in mainframe computer systems.

Converting to Floating-point Form. Converting from decimal to the floating-point form is a simple task that is ac-
complished through the following steps:

1. Convert the decimal number into binary.

2. Normalize the binary number.

3. Calculate the biased exponent.

4. Store the number in the floating-point format.

These four steps are illustrated for the decimal number 100.25 10 10 Example D-3. Here, the decimal number
is converted to a single-precision (32-bit) floating-point number.

3130 23 22 0
S| Exp. Fraction
¢ (a)
63 62 52 51 0
S| Exp. Fraction
[]
(b)
79 78 64 63 0
T
S| Exp. 1, Fraction
[]

(©

Note: S = sign-bit and Exp. = exponent

FIGURE D-3 Floating-point (real) format for the 80X87 family of arithmetic
coprocessors. (a) Short (single-precision) with a bias of 7FH, (b) long (double-
precision) with a bias of 3FFH, and (c) temporary (extended-precision) with

a bias of 3FFFH.

DATA FORMATS FOR THE ARITHMETIC COPROCESSOR M

EXAMPLE D-3

Step Result

1 100.25 = 1100100.01

2 1100100.01 = 1.10010001 x 26
3 110 + 01111111 = 10000101

4 sign = 0

Exponent = 10000101
Significand = 10010001000000000000000

In step three of Example D-3, the biased exponent is the exponent, a 26 or 110, plus a bias of 01111111
(7FH) or 10000101 (85H). All single-precision numbers use a bias of 7FH, double-precision numbers use a bias
of 3FFH, and extended-precision numbers use a bias of 3FFFH.

In step 4 of Example D-3, the information found in the prior steps is combined to form the floating-point
number. The leftmost bit is the sign-bit of the number. In this case, it is a 0 because the number is +100.25,,. The
biased exponent follows the sign-bit. The significand is a 23-bit number with an implied one-bit. Note that the
significand of a number 1.XXXX is the XXXX portion. The 1. is an implied one-bit that is only stored in the ex-
tended precision form of the floating-point number as an explicit one-bit.

Some special rules apply to a few numbers. The number 0, for example, is stored as all zeros except for the
sign-bit, which can be a logic 1 to represent a negative zero. The plus and minus infinity is stored as logic s in
the exponent with a significand of all zeros and the sign-bit that represents plus or minus. A NAN (not-a-number)
is an invalid floating-point result that has all ones in the exponent with a significand that is not all zeros.

Converting from Floating-point Form. Conversion to a decimal number from a floating-point number is sum-
marized in the following steps:

Separate the sign-bit, biased exponent, and significand.
Convert the biased exponent into a true exponent by subtracting the bias.
Write the number as a normalized binary number.
. Convert it to a de-normalized binary number.
. Convert the de-normalized binary number to decimal.
These five steps convert a single-precision floating-point number to decimal, as shown in Example D—4.
Notice how the sign-bit of 1 makes the decimal result negative. Also notice that the implied one-bit is added to
the normalized binary result in step 3.

N N

EXAMPLE D4
Step Result
1 Sign =1

Exponent = 10000011
Significand = 10010010000000000000000

2 100 = 10000011 - 01111111
3 1.1001001 x 24

4 11001.001

5 -25.125

Storing Floating-point Data in Memory. Floating-point numbers are stored with the assembler using the DD
directive for single-precision, DQ for double-precision, and DT for extended-precision. Some examples of

712 APPENDIX D THE ARITHMETIC COPROCESSOR: DATA FORMATS, INSTRUCTIONS, AND PROGRAMMING

floating-point data storage are shown in Example D-5. The author discovered that the Microsoft version 6.0
macro assembler contains an error that does not allow a plus sign to be used with positive floating-point numbers.
A 492.45 must be defined as 92.45 for the assembler to function correctly. Microsoft has assured the author that
this error has been corrected in version 6.11 of MASM if the REAL4, REALS, or REAL10 directives are used in
place of DD, DQ, and DT to specify floating-point data. The assembler provides access 8087 emulator if your
system does not contain a microprocessor with a coprocessor. The emulator comes with all Microsoft high-level
languages or as shareware programs such as EM87. The emulator is accessed by including the OPTION EMU-
LATOR statement immediately following the MODEL statement in a program. Be aware that the emulator does
not emulate some of the coprocessor instructions. Do not use this option if your system contains a coprocessor. In
all cases, you must include the .8087, .80187, .80287, .80387, .80487, or .80587 switch to enable the generation of
coprocessor instructions. Note that there is currently no switch for the Pentium 4 through Pentium Pro, but it will
most likely be .80687 when Microsoft produces the next version of the assembler program.

EXAMPLE D-5

0000 (C€377999A DATA7 DD -247.6 ;define single-precision

0004 40000000 DATAS8 DD 2.0 ;define single-precision

0008 486F4200 DATA9 REAL4 2.45E+5 ;define single-precision

000C DATAL10Q DQ 100.25 ;define double-precision
4059100000000000

00E DATAll REAL8 0.001235 ;define double-precision
3F543BF727136A40

001C DATA12 REAL10 33.9876 ;define extended-precision
400487F34D6A161E4F76

Coprocessor Instructions

Although the microprocessor circuitry has not been discussed, the instruction sets of these coprocessors and their
differences from the other versions of the coprocessor can be discussed. These newer coprocessors contain the
same basic instructions provided by the earlier versions, with a few additional instructions.

The 80387, 80486, 80487SX, and Pentium through the Pentium 4 contain the following additional instruc-
tions: FCOS (cosine), FPREM1 (partial remainder), FSIN (sine), FSINCOS (sine and cosine), and FUCOM/FU-
COMP/FUCOMPP (unordered compare). The sine and cosine instructions are the most-significant addition to the
instruction set. In the earlier versions of the coprocessor, the sine and cosine is calculated from the tangent. The
Pentium Pro through the Pentium 4 contain two new floating-point instructions: FCMOV (a conditional move)
and FCOMI (a compare and move to flags).

Table D-2 lists the instruction sets for all versions of the coprocessor. It also lists the number of clocking pe-
riods required to execute each instruction. Execution times are listed for the 8087, 80287, 80387, 80486, 80487, and
Pentium-Pentium 4. (The timings for the Pentium through the Pentium 4 are the same because the coprocessor is
identical in each of these microprocessors.) To determine the execution time of an instruction, the clock time is mul-
tiplied times the listed execution time. The FADD instruction requires 70-E3 clocks for the 80287. Suppose that an 8
MHz clock is used with the 80287. The clocking period is 1/8 MHz, or 125 ns. The FADD instruction requires be-
tween 8.75 (3 and 17.875 ps to execute. Using a 33 MHz (33 ns) 80486DX2, this instruction requires between 0.264
Hs and 0.66 (3 to execute. On the Pentium the FADD instruction requires from 1-7 clocks, so if operated at 133 MHz
(7.52 ns), the FADD requires between 0.00752 3 and 0.05264 (3. The Pentium Pro through the Pentium 4 are even
faster than the Pentium.

Table D-2 uses some shorthand notations to represent the displacement that may or may not be required for
an instruction that uses a memory-addressing mode. It also uses the abbreviation mmm, to represent a
register/memory addressing mode, and uses rrr to represent one of the floating-point coprocessor registers
ST(0)-ST(7). The d (destination) bit that appears in some instruction opcodes defines the direction of the data
flow, as in FADD ST,ST(2) or FADD ST(2),ST. The d bit is a logic O for flow toward ST, as in FADD ST,ST(2),
where ST holds the sum after the addition; and a logic 1 for FADD ST(2),ST, where ST(2) holds the sum.

DATA FORMATS FOR THE ARITHMETIC COPROCESSOR 713

Also note that some instructions allow a choice of whether a wait is inserted. For example, the FSTSW
AX instruction copies the status register into AX. The FNSTSW AX instruction also copies the status register to
AX, but without a wait.

TABLE D-2 The instruction set of the arithmetic coprocessor (pp. 713-728).

F2XM1 25T -1

11011001 11110000

Example Clocks

F2XM1 8087 310-630
80287 310-630
80387 211-476
80486/7 140-279
Pentium—Pentium 4 13-57

FABS Absolute value of ST

11011001 11100001

Example Clocks

FABS 8087 10-17
80287 10-17
80387 22
80486/7 3
Pentium—Pentium 4 1

FADD/FADDP/FIADD Addition

11011000 00000mmm disp 32-bit memory (FADD)

11011100 00000mmm disp 64-bit memory (FADD)

11011d00 11000rrr FADD ST,ST(rrr)

11011110 11000rrr FADDP ST,ST(rrr)

11011110 00000mmm disp 16-bit memory (FIADD)

11011010 00000mmm disp 32-bit memory (FIADD)

Format Examples Clocks

FADD FADD DATA 8087 70-143

FADDP FADD ST,ST(1)

FIADD FADDP 80287 70-143
FIADD NUMBER 80387 23-72
FADD ST,ST(3)
FADDP ST,ST(2) 80486/7 8-20

FADD ST(2),ST Pentium-Pentium 4 1-7

714 APPENDIX D THE ARITHMETIC COPROCESSOR: DATA FORMATS, INSTRUCTIONS, AND PROGRAMMING

FCLEX/FNCLEX Clear errors

11011011 11100010

Example Clocks

FCLEX 8087 2-8

FNCLEX 80287 2-8
80387 11
80486/7 7
Pentium—Pentium 4 9

FCOM/FCOMP/FCOMPP/FICOM/FICOMP Compare

11011000 00010mmm disp 32-bit memory (FCOM)
11011100 00010mmm disp 64-bit memory (FCOM)
11011000 11010rrr FCOM ST(rrr)
11011000 0o0t1mmm disp 32-bit memory (FCOMP)
11011100 00011mmm disp 64-bit memory (FCOMP)
11011000 11011rrr FCOMP ST(rrr)
11011110 11011001 FCOMPP
11011110 00010mmm disp 16-bit memory (FICOM)
11011010 00010mmm disp 32-bit memory (FICOM)
11011110 00011mmm disp 16-bit memory (FICOMP)
11011010 00011mmm disp 32-bit memory (FICOMP)
Format Examples Clocks
FCOM FCOM ST(2) 8087 40-93
FCOMP FCOMP DATA
FCOMPP FCOMPP 80287 40-93
FICOM FICOM NUMBER 80387 24-63
FICOMP FICOMP DATA3
80486/7 15-20
Pentium—Pentium 4 1-8

FCOMI/FUCOMI/COMIP/FUCOMIP Compare and Load Flags

11011011 11110nr FCOMI ST(rrr)

11011011 11101rr FUCOMI ST(rr)

11011111 11110nr FCOMIP ST{rrr)

11011111 11101rrr FUCOMIP ST(rrr)

Format Examples Clocks
FCOM FCOMI ST(2) 8087 _—
FUCOMI FUCOMI ST(4)

FCOMIP FCOMIP ST(0) 80287 -
FUCOMIP FUCOMIP ST(1) 80387 —

80486/7 —

Pentium-Pentium 4 —

DATA FORMATS FOR THE ARITHMETIC COPROCESSOR 715

FCMOVcc Conditional Move

11011010 11000rrr FCMOVB ST(rrr)

11011010 11001rrr FCMOVE ST(rrr)

11011010 11010rrr FCMOVBE ST(rrr)

11011010 11011nr FCMOVU ST(rrr)

11011011 11000rrr FCMOVNB ST(rrr)

11011011 11001rrr FCMOVNE ST(rrr)

11011011 11010rrr FCMOVENBE ST(rrr)

11011011 1101 1rrr FCMOVNU ST(rrr)

Format Examples Clocks

FCMOVB FCMOVB ST(2) 8087 —

FCMOVE FCMOVE ST(3) 80287 —
80387 —
80486/7 —

Pentium—Pentium 4 —

FCOS Cosine of ST

11011001 11111111

Example Clocks

FCOS 8087 —
80287 —_
80387 123-772
80486/7 193-279
Pentium-Pentium 4 18-124

FDECSTP Decrement stack pointer

11011001 11110110

Example Clocks

FDECSTP 8087 6-12
80287 6-12
80387 22
80486/7 3
Pentium—Pentium 4 1

716 APPENDIX D THE ARITHMETIC COPROCESSOR: DATA FORMATS, INSTRUCTIONS, AND PROGRAMMING

FDISI/FNDISI Disable interrupts
11011011 11100001
(Ignored on the 80287, 80387, 80486/7, Pentium—Pentium 4)
Example Clocks
FDISI 8087 2-8
FNDISI 80287 _
80387 —
80486/7 —
Pentium—Pentium 4 -
FDIV/FDIVP/FIDIV Division
11011000 oo110mmm disp 32-bit memory (FDIV)
11011100 0o100mmm disp 64-bit memory (FDIV)
11011d00 11111rrr FDIV ST,ST(rrr)
11011110 11111nr FDIVP ST,ST(rrr)
11011110 oo110mmm disp 16-bit memory (FIDIV)
11011010 oo110mmm disp 32-bit memory (FIDIV)
Format Examples Clocks
FDiV FDIV DATA 8087 191-243
FDIVP FDIV ST,ST(3)
FIDIV FDIVP 80287 191-243
FIDIV NUMBER 80387 88-140
FDIV ST,ST(5)
FDIVP ST,ST(2) 80486/7 889
FDIV 8T(2),ST Pentium—Pentium 4 | 39-42
FDIVR/FDIVRP/FIDIVR Division reversed
11011000 oo111mmm disp 32-bit memory (FDIVR)
11011100 oo111mmm disp 64-bit memory (FDIVR)
11011d00 11110rr FDIVR ST,ST(rrr)
11011110 11110nr FDIVRP ST,ST(rrr)
11011110 oo111mmm disp 16-bit memory (FIDIVR)
11011010 ocot1immm disp 32-bit memory (FIDIVR)
Format Examples Clocks
FDIVR FDIVR DATA 8087 191-243
FDIVRP FDIVR ST,ST(3)
FIDIVR FDIVRP 80287 191-243
FIDIVR NUMBER 80387 88-140
FDIVR ST,ST(5)
FDIVRP ST,ST(2) 80486/7 889
FDIVR ST(2),ST Pentium—Pentium 4 39-42

" DATA FORMATS FOR THE ARITHMETIC COPROCESSOR

FENV/FNENI Disable interrupts

11011011 11100000

(Ignored on the 80287, 80387, 80486/7, Pentium-Pentium 4)

Example Clocks

FENI 8087 2-8

FNENI 80287 —
80387 —
80486/7 —
Pentium—Pentium 4 —

FFREE Free register

11011101 11000rrr

Format Examples Clocks

FFREE FFREE 8087 9-16

FFREE ST(1)
FFREE ST(2) 80287 9-16

80387 18
80486/7 3
Pentium-Pentium 4 1

FINCSTP Increment stack pointer

11011001 11110111

Example Clocks

FINCSTP 8087 6-12
80287 6-12
80387 21
80486/7 3

Pentium—Pentium 4

717

718 APPENDIX D THE ARITHMETIC COPROCESSOR: DATA FORMATS, INSTRUCTIONS, AND PROGRAMMING

FINIT/FNINIT

Initialize coprocessor

11011001 11110110

Example Clocks

FINIT 8087 2-8

FNINIT 80287 2-8
80387 33
80486/7 17
Pentium—Pentium 4 12-16

FLD/FILD/FBLD Load data to ST(0)

11011001 00000mmm disp 32-bit memory (FLD)

11011101 00000mmm disp 64-bit memory (FLD)

11011011 oo101mmm disp 80-bit memory (FLD)

11011111 00000mmm disp 16-bit memory (FILD)

11011011 00000mmm disp 32-bit memory (FILD)

11011111 oco101mmm disp 64-bit memory (FILD)

11011111 0o100mmm disp 80-bit memory (FBLD)

Format Examples Clocks

FLD FLD DATA 8087 17-310

FILD FILD DATA1

FBLD FBLD DEC_DATA 80287 17-310
80387 14-275
80486/7 3-103
Pentium—Pentium 4 1-3

FLD1 Load +1.0 to ST(0)

11011001 11101000

Example Clocks

FLD1 8087 15-21
80287 15-21
80387 24
80486/7 4
Pentium—Pentium 4 2

DATA FORMATS FOR THE ARITHMETIC COPROCESSOR

FLDZ Load +0.0 to ST(0)

11011001 11101110

Example Clocks

FLDZ 8087 11-17
80287 11-17
80387 20
80486/7
Pentium—Pentium 4 2

FLDPI Load Oto ST(0)

11011001 11101011

Example Clocks

FLDPI 8087 16-22
80287 16-22
80387 40
80486/7 8
Pentium—Pentium 4 3-5

FLDL2E Load log,e to ST(0)

11011001 11101010

Example Clocks

FLDL2E 8087 15-21
80287 15-21
80387 40
80486/7 8
Pentium-Pentium 4 3-5

FLDL2T Load log,10 to ST(0)

11011001 11101001

Example Clocks

FLDL2T 8087 16~-22
80287 16-22
80387 40
80486/7 8
Pentium-Pentium 4 3-5

719

720 APPENDIX D THE ARITHMETIC COPROCESSOR: DATA FORMATS, INSTRUCTIONS AND PROGRAMMING

FLDLG2 Load log,,2 to ST(0)

11011001 11101000

Example Clocks

FLDLG2 8087 18-24
80287 18-24
80387 41
80486/7 8
Pentium—Pentium 4 3-5

FLDLN2 Load log,2 to ST(0)

11011001 11101101

Example Clocks

FLDLN2 8087 17-23
80287 17-23
80387 4
80486/7 8
Pentium—Pentium 4 3-5

FLDCW Load control register

11011001 oo101mmm disp

Format Examples Clocks
FLDCW FLDCW DATA 8087 7-14
FLDCW STATUS 80287 714
80387 19
80486/7 4
Pentium—-Pentium 4 7

FLDENV Load environment

11011001 00100mmm disp

Format Examples Clocks
FLDENV FLDENV ENVIRON 8087 35-45
FLDENV DATA 80287 2545
80387 71
80486/7 34-44

Pentium—Pentium 4 32-37

DATA FORMATS FOR THE ARITHMETIC COPROCESSOR

FMUL/FMULP/FIMUL Multiplication

11011000 00001mmm disp
11011100 00001mmm disp

32-bit memory (FMUL)
64-bit memory (FMUL)

11011d00 11001rrr FMUL ST,ST(rrr)

11011110 11001rrr FMULP ST,ST(rrr)

11011110 0000tmmm disp 16-bit memory (FIMUL)

11011010 00001mmm disp 32-bit memory (FIMUL)

Format Examples Clocks

FMUL FMUL DATA 8087 110-168

FMULP FMUL ST,ST(2)

FIMUL FMUL ST(2),ST 80287 110-168

FMULP 80387 29-82
T,
FIMUL DATA3 80486/7 11-27

Pentium-Pentium 4 1-7

FNOP No operation

11011001 11010000

Example Clocks

FNOP 8087 10-16
80287 10-16
80387 12
80486/7 3
Pentium-Pentium 4 1

FPATAN Partial arctangent of ST(0)

11011001 11110011

Example Clocks

FPATAN 8087 250-800
80287 250-800
80387 314487
80486/7 218-303
Pentium—Pentium 4 17-173

721

722 APPENDIX D THE ARITHMETIC COPROCESSOR: DATA FORMATS, INSTRUCTIONS, AND PROGRAMMING

FPREM Partial remainder

11011001 11111000

Example Clocks

FPREM 8087 15-190
80287 15-190
80387 74-155
80486/7 70-138
Pentium—Pentium 4 1664

FPREM1 Partial remainder (IEEE)

11011001 11110101

Example Clocks

FPREM1 8087 —
80287 —
80387 95-185
80486/7 _ 72-167
Pentium-Pentium 4 20-70

FPTAN Partial tangent of ST(0)

11011001 11110010

Example Clocks

FPTAN 8087 30-450
80287 30450
80387 191497
80486/7 200273
Pentium—Pentium 4 17-173

FRNDINT Round ST(0) to an integer

11011001 11111100

Example Clocks

FRNDINT 8087 16-50
80287 16-50
80387 66-80
80486/7 21-30
Pentium—Pentium 4 9-20

DATA FORMATS FOR THE ARITHMETIC COPROCESSOR

FRSTOR

Restore state

11011101 oo110mmm disp

Format Examples Clocks
FRSTOR FRSTOR DATA 8087 197-207
FRSTOR STATE
FRSTOR MACHINE 80287 197-207
80387 308
80486/7 120-131
Pentium—Pentium 4 70-95
FSAVE/FNSAVE Save machine state
11011101 oo110mmm disp
Format Examples Clocks
FSAVE FSAVE STATE 8087 197-207
FNSAVE FNSAVE STATUS
FSAVE MACHINE 80287 197-207
80387 375
80486/7 143-154
Pentium—Pentium 4 124-151
FSCALE Scale ST(0) by ST(1)
11011001 11111101
Example Clocks
FSCALE 8087 32-38
80287 32-38
80387 67-86
80486/7 30-32
Pentium—Pentium 4 20-31
FSETPM Set protected mode
11011011 11100100
Example Clocks
FSETPM 8087 —
80287 2-18
80387 12
80486/7 —

Pentium—Pentium 4

723

724 APPENDIX D THE ARITHMETIC COPROCESSOR: DATA FORMATS, INSTRUCTIONS, AND PROGRAMMING

FSIN Sine of ST(0)

11011001 11111110

Example Clocks

FSIN 8087 —
80287 —
80387 122-771
80486/7 193-279
Pentium—Pentium 4 16-126

FSINCOS Find sine and cosine of ST(0)

11011001 11111011

Example Clocks

FSINCOS 8087 —
80287 —
80387 194-809
80486/7 243-329
Pentium—Pentium 4 17-137

FSQRT Square root of ST(0)

11011001 11111010

Example Clocks

FSQRT 8087 180-186
80287 180-186
80387 122-129
80486/7 83-87
Pentium—Pentium 4 70

DATA FORMATS FOR THE ARITHMETIC COPROCESSOR

FST/FSTP/FIST/FISTP/FBSTP Store

11011001 00010mmm disp 32-bit memory (FST)
11011101 00010mmm disp 64-bit memory (FST)
11011101 11010rrr FST ST(rrr)
11011011 00011mmm disp 32-bit memory (FSTP)
11011101 0o011mmm disp 64-bit memory (FSTP)
11011011 oo111mmm disp 80-bit memory (FSTP)
11011101 11001rrr FSTP ST(rrr)
11011111 00010mmm disp 16-bit memory (FIST)
11011011 00010mmm disp 32-bit memory (FIST)
11011111 00011mmm disp 16-bit memory (FISTP)
11011011 oo0O11mmm disp 32-bit memory (FISTP)
11011111 oot11mmm disp 64-bit memory (FISTP)
11011111 oo110mmm disp 80-bit memory (FBSTP
Format Examples Clocks
FST FST DATA 8087 15-540
FSTP FST ST(3)
FIST FST 80287 15-540
FISTP FSTP 80387 11-534
FBSTP FIST DATA2
FBSTP DATA6 80486/7 3176
FISTP DATA9 Pentium-Pentium 4 1-3
FSTCW/FNSTCW Store control register
11011001 oo111mmm disp
Format Examples Clocks
FSTCW FSTCW CONTROL 8087 12-18
FNSTCW FNSTCW STATUS
FSTCW MACHINE 80287 12-18
80387 15
80486/7 3
Pentium--Pentium 4
FSTENV/FNSTENV Store environment
11011001 oo110mmm disp
Format Examples Clocks
FSTENV FSTENV CONTROL 8087 40-50
FNSTENV FNSTENV STATUS
FSTENV MACHINE 80287 40-50
80387 103-104
80486/7 58-67

Pentium—Pentium 4

48-50

725

726 APPENDIX D THE ARITHMETIC COPROCESSOR: DATA FORMATS, INSTRUCTIONS, AND PROGRAMMING

FSTSW/FNSTSW Store status register

11011101 oo111mmm disp

Format Examples Clocks
FSTSW FSTSW CONTROL 8087 12-18
FNSTSW FNSTSW STATUS
FSTSW MACHINE 80287 12-18
FSTSW AX 80387 15
80486/7 3
Pentium—Pentium 4 2-5
FSUB/FSUBP/FISUB Subtraction
11011000 00100mmm disp 32-bit memory (FSUB)
11011100 00100mmm disp 64-bit memory (FSUB)
11011d00 11101 FSUB ST,ST(rrr)
11011110 11101 FSUBP ST,ST(rrr)
11011110 00100mmm disp 16-bit memory (FISUB)
11011010 00100mmm disp 32-bit memory (FISUB)
Format Examples Clocks
FSUB FSUB DATA 8087 70-143
FSUBP FSUB ST,ST(2)
FISUB FSUB ST(2),ST 80287 70-143
FSUBP 80387 29-82
FISUB DATA
3 80486/7 8-35
Pentium—Pentium 4 1-7
FSUBR/FSUBRP/FISUBR Reverse subtraction
11011600 0010tmmm disp 32-bit memory (FSUBR)
11011100 oo101mmm disp 64-bit memory (FSUBR)
11011d00 11100rrr FSUBR ST,ST(rrr)
11011110 11100rrr FSUBRP ST,ST(rmr)
11011110 oo10tmmm disp 16-bit memory (FISUBR)
11011010 oo10tmmm disp 32-bit memory (FISUBR)
Format Examples Clocks
FSUBR FSUBR DATA 8087 70-143
FSUBRP FSUBR ST,ST(2)
FISUBR FSUBR ST(2),ST 80287 70-143
FSUBRP 80387 29-82
FISUBR DATA3 :
U 80486/7 8-35

Pentium—Pentium 4

DATA FORMATS FOR THE ARITHMETIC COPROCESSOR

FTST

Compare ST(0) with + 0.0

11011001 11100100

Example Clocks
FTST 8087 3848
80287 3848
80387 28
80486/7 4
Pentium—Pentium 4 14
FUCOM/FUCOMP/FUCOMPP Unordered compare
11011101 11100rrr FUCOM ST,ST(rrr)
11011101 11101rrr FUCOMP ST,ST(rrr)
11011101 11101001 FUCOMPP
Format Examples Clocks
FUCOM FUCOM ST,ST(2) 8087 —
FUCOMP FUCOM 80287 _
FUCOMPP FUCOMP ST,ST(3)
FUCOMP 80387 24-26
FUCOMPP 80486/7 45
Pentium—Pentium 4 14
FWAIT Wait
10011011
Example Clocks
FWAIT 8087 4
80287 3
80387 6
80486/7 1-3
Pentium—Pentium 4 1-3
FXAM Examine ST(0)
11011001 11100101
Example Clocks
FXAM 8087 12-23
80287 12-23
80387 30-38
8048677 8
Pentium—Pentium 4 21

727

728 APPENDIX D THE ARITHMETIC COPROCESSOR: DATA FORMATS, INSTRUCTIONS, AND PROGRAMMING

FXCH Exchange ST(0) with another register

11011001 11001rr FXCH ST,ST(rrr)
Format Examples Clocks
FXCH FXCH ST,ST(1) 8087 10-15
Eig: ST,ST(4) 80287 10715
80387 18
80486/7 4
Pentium—Pentium 4 1

FXTRACT Extract components of ST(0)

11011001 11110100

Example Clocks

FXTRACT ‘ 8087 27-55
80287 27-55
80387 70-76
80486/7 16-20
Pentium~Pentium 4 13

FYL2X ST(1) x log, ST(0)

11011001 11110001

Example Clocks

FyL2X 8087 900-1100
80287 900-1100
80387 120-538
80486/7 196-329
Pentium~Pentium 4 22-111

FXL2XP1 ST(1) x log, [ST(0) + 1.0]

11011001 11111001

Example Clocks

FXL2XP1 8087 700-1000
80287 700-1000
80387 257-547
80486/7 171-326
Pentium—Pentium 4 22-103

Notes: d = direction, where d = 0 for ST as the destination, and d = 1 for ST as the source; rrr = floating-point
register number; 00 = mode; mmm = r/m field; and disp = displacement

PROGRAMMING WITH THE ARITHMETIC COPROCESSOR 729

PROGRAMMING WITH THE ARITHMETIC COPROCESSOR

This section of the chapter provides programming examples for the arithmetic coprocessor. Each example is
chosen to illustrate a programming technique for the coprocessor.

Calculating the Area of a Circle

This first programming example illustrates a simple method of addressing the coprocessor stack. First, recall
that the equation for calculating the area of a circle is A = (R2. A program that performs this calculation is listed
in Example D-6. Note that this program takes test data from array RAD that contains five sample radii. The five
areas are stored in a second array cailled AREA. No attempt is made in this program to use the data from the AREA
array.

EXAMPLE D-6
;A short program that finds the area of five circles whose
;radii are stored in array RAD.
.MODEL SMALL
.386 ;select 80386
.387 ;select 80387
0000 .DATA
0000 4015C28F RAD DD 2.34,5.66,9.33,234.5,23.4
40B51EB8
411547AE
436A8000
41BB3333
0014 0005 [AREA DD 5 DUP (?)
00000000
]
0000 .CODE
.STARTUP
0010 BE 0000 MOV SI,O ;source element 0
0013 BF 0000 MOV DI,O ;destination element 0
0016 B9 0005 MOV CX,5 ;count of 5
0019 MAINI1:
0019 D9 84 0000 R FLD RAD [SI] ;radius to ST
001D D8 C8 FMUL ST, ST(0) ;square radius
001F D9 EB FLDPI ;0 to ST
0021 DE C9 FMUL ;multiply ST = ST x ST(1)
0023 D9 9D 0014 R FSTP AREA [DI] ;save area
0027 46 INC SI
0028 47 INC DI
0029 E2 EE LOOP MAIN1
.EXIT
END

Although this is a simple program, it does illustrate the operation of the stack. To provide a better under-
standing of the operation of the stack, Figure D4 shows that the contents of the stack after each instruction of Ex-
ample D-6 executes. Note only one pass through the loop is illustrated because the program calculates five areas
and each pass is identical.

The first instruction loads the contents of memory location RAD [SI], one of the elements of the array, to the
top of the stack. Next, the FMUL ST, ST(0) instruction squares the radius on the top of the stack. The FLDPI in-
struction loads n to the stack top. The FMUL instructions use the classic stack addressing mode to multiply ST by
ST(1). After the multiplication, the prior values of ST and ST(1) are removed from the stack and the product re-
places them at the top of the stack. Finally, the FSTP [DI] instruction copies the top of the stack, the area, to an
array memory location AREA and clears the stack.

730 APPENDIX D THE ARITHMETIC COPROCESSOR: DATA FORMATS, INSTRUCTIONS, AND PROGRAMMING

ST (0)
ST(1)
ST (2)
ST (3)

ST (0)
ST (1)
ST (2)
ST (3)

ST (0)
ST (1)
ST(2)
ST (3)

FLD RAD [SI] FMUL ST,ST (0)
RADIUS ST ST(0) RADIUS?
ST (1)
ST (@)
ST (3)
FLDPI FMUL
n ST sT©]| wRADIUS®
RADIUS® / ST(1)
ST(2)
ST (3)
FSTP AREA [DI] /
ST

ST

ST

FIGURE D-4 Operation of the stack for Example D—4. Note that
the stack is shown after the execution of the indicated instruction.

Notice how care is taken to always remove all stack data. This is important because if data remain on the
stack at the end of the procedure, the stack top will no longer be register 0. This could cause problems because
software assumes that the top of the stack is register 0. Another way of ensuring that the coprocessor is initialized

is to place the FINIT (initialization) instruction at the start of the program.

Finding the Resonant Frequency

An equation commonly used in electronics is the formula for determining the resonant frequency of an LC circuit.

The equation solved by the program illustrated in Example D-7.

EXAMPLE D-7

;A sample program that finds the resonant frequency of an LC

1
Fr

;jtank circuit.

’

.MODEL SMALL

.386
.387
0000 .DATA

231LC
This example uses L1 for the inductance L, C1 for the capacitor C, and RESO for the resultant resonant frequency.

PROGRAMMING WITH THE ARITHMETIC COPROCESSOR 731

0000 00000000 RESO DD ? - ;resonant frequency
0004 358637BD Ll DD 0.000001 ;inductance
0008 358637BD C1l DD 0.000001 ;capacitance
000C 40000000 TWO DD 2.0 ;constant
0000 .CODE
. STARTUP
0010 D9 06 0004 R FLD L1 ;get L
0014 D8 OE 0008 R FMUL C1 ;f£ind LC
0018 D9 FA FSQRT ;find <EC
001A D8 OE 000C R FMUL TWO ;find 2¢BC
001E D9 EB FLDPI ;get O _
0020 DE C9 FMUL ;get 2(0-<:C
0022 D9 E8 FLD1 ;get 1 .
0024 DE F1 FDIVR ;form 1/ (20F+&C)
0026 D9 1E 0000 R FSTP RESO ;save frequency
JEXIT
END

Notice the straightforward manner in which the program solves this equation. Very little extra data manipu-
lation is required because of the stack inside the coprocessor. Notice how the constant TWO is defined for the pro-
gram and how the DIVRP, using classic stack addressing, is used to form the reciprocal. If you own a
reverse-polish entry calculator, such as those produced by Hewlett-Packard, you are familiar with stack ad-
dressing. If not, using the coprocessor will increase your experience with this type of entry.

Finding the Roots Using the Quadratic Equation

This example illustrates how to find the roots of a polynomial expression (ax? + bx + ¢ = 0) by using the quadratic
equation. The quadratic equation is

b~ 4ac
2a

bx

Example D-8 illustrates a program that finds the roots (R1 and R2) for the quadratic equation. The constants are
stored in memory locations A1, B1, and C1. Note that no attempt is made to determine the roots if they are imagi-
nary. This example tests for imaginary roots and exits to DOS with a zero in the roots (R1 and R2), if it finds them.
In practice, imaginary roots could be solved for and stored in a separate set of result memory locations.

EXAMPLE D-8
;A program that finds the roots of a polynomial equation using
;the quadratic equation. Note imaginary roots are indicated if
;:both root 1 (R1) and root 2 (R2) are zero.
.MODEL SMALL
.386
.387
0000 .DATA
0000 40000000 TWO DD 2.0
0004 40800000 FOUR DD 4.0
0008 3F800000 Al DD 1.0
000C 00000000 Bl DD 0.0
0010 C€1100000 Cl DD -9.0
0014 00000000 R1 DD ?
0018 00000000 R2 DD ?

732 APPENDIX D THE ARITHMETIC COPROCESSOR: DATA FORMATS, INSTRUCTIONS, AND PROGRAMMING

0000 .CODE
. STARTUP
0010 D9 EE FLDZ
0012 D9 16 0014 R FST R1 jclear roots
0016 D9 1E 0018 R FSTP R2
001A D9 06 0000 R FLD TWO
001E D8 OE 0008 R FMUL Al ;form 2a
0022 D9 06 0004 R FLD FOUR
0026 D8 OE 0008 R FMUL Al
002A D8 OE 0010 R FMUL C1 ;form 4ac
002E D9 06 000C R FLD Bl
0032 D8 OE 000C R FMUL Bl ; form b?
0036 DE E1 FSUBR ;form b?-4ac
0038 D9 E4 FTST ;test b?-4ac for zero
003A 9B DF EO FSTSW AX ;jcopy status register to AX
003D 9E SAHF ;move to flags
003E 74 OE JZ ROOTS1 ;if b%-4ac is zero
0040 D9 FA FSQRT ;find square root of b?-4ac
0042 9B DF EO FSTSW AX
0045 A9 0001 TEST AX,1 ;test for invalid error (negative)
0048 74 04 JZ ROOTS1
004A DE D9 FCOMPP ;clear stack
004C EB 18 JMP ROOTS2 ;end
004E ROOTS1:
004E D9 06 000C R FLD B1
0052 D8 E1 FSUB ST, ST(1)
0054 D8 F2 FDIV ST,ST(2)
0056 D9 1E 0014 R FSTP R1 ;save root 1
005A D9 06 000C R FLD Bl
005E DE C1 FADD
0060 DE F1 FDIVR
0062 D9 1E 0018 R FSTP R2 ;save root 2
0066 ROOTS2:
LEXIT
END

Using a Memory Array to Store Results

The next programming example illustrates the use of a memory array and the scaled-indexed addressing mode to ac-
cess the array. Example D-9 shows a program that calculates 100 values of inductive reactance. The equation for in-
ductive reactance is XL = 2(FL. In this example, the frequency range is from 10 Hz to 1000 Hz for F and an
inductance of 4H. Notice how the instruction FSTP DWORD PTR CS:[EDI+4*ECX] is used to store the reactance
for each frequency, beginning with the last at 1000 Hz and ending with the first at 10 Hz. Also notice how the
FCOMP instruction is used to clear the stack just before the RET instruction.

EXAMPLE D-9
;A program that calculates the inductive reactance of L
;at a frequency range of 10Hz to 1000Hz and stores them
;in array XL. Note that the increment is 10Hz.
.MODEL SMALL
.386
.387
0000 .DATA
0000 40800000 L DD 4.0 ;4.0H test value
0004 0064 [XL DD 100 DUP (?)
00000000
1
0194 447A0000 F DD 1000.0 ;start at 1000Hz

0198 41200000 TEN DD 10.0 ;increment of 10Hz

PROGRAMMING WITH THE ARITHMETIC COPROCESSOR 733

0000 .CODE
. STARTUP
0010 66| B9 00000064 MOV ECX, 100 ;load count
0016 66| BF 00000000 R MOV EDI,OFFSET XL-4 ;address result
001C D9 EB FLDPI ;get O
001E D8 CO FADD ST,ST(0) ; form 200
0020 D8 OE 0000 R FMUL L ; form 2(L
0024 L1:
0024 D9 06 0194 R FLD F ;get F
0028 D8 C9 FMUL ST,ST(1)
002a 67& D9 1C 8F FSTP DWORD PTR [EDI+4*ECX]
002E D9 06 0194 R FLD F
0032 D8 26 0198 R FSUB TEN ;change frequency
0036 D9 1E 0194 R FSTP F
003A E2 E8 LOOP L1
003C D8 D9 FCOMP
.EXIT
END

Displaying a Single-precision Floating-point Number

This section of the text shows how to take the floating-point contents of a 32-bit single-precision floating-point
number and display it on the video display. The procedure displays the floating-point number as a mixed number
with an integer part and a fractional part, separated by a decimal point. In order to simplify the procedure, a limit
is placed on the display size of the mixed number so the integer portion is a 32-bit binary number and the fraction
is a 24-bit binary number. The procedure will not function properly for larger or smaller numbers.

Example D-10 lists a program that calls a procedure for displaying the contents of memory location NUMB
on the video display at the current cursor position. The procedure first tests the sign of the number and displays a
minus sign for a negative number. After displaying the minus sign, if needed, the number is made positive by the
FABS instruction. Next, it is divided into an integer and fractional part and stored at WHOLE and FRACT. Notice
how the FRNDINT instruction is used to round (using the chop mode) the top of the stack to form the whole
number part of NUMB. The whole number part is then subtracted from the original number to generate the frac-
tional part. This is accomplished with the FSUB instruction that subtracts the contents of ST(1) from ST.

EXAMPLE D-10
;A program that displays the floating-point contents of NUMB
;as a mixed decimal number.
.MODEL SMALL
.386
.387
0000 .DATA
0000 C50B0200 NUMB DD -2224.125 ;test data
0004 0000 TEMP DW ?
0006 00000000 WHOLE DD ?
000A 00000000 FRACT DD ?
0000 .CODE
. STARTUP
0010 E8 000B CALL DISP ;display NUMB
.EXIT
;A procedure that displays the ASCII code from AL.
0017 DISPS PROC NEAR
0017 B4 06 MOV AH,6 ;display AL
0019 8A DO MOV DL, AL
0°""B CD 21 INT 21H

oL.D C3 RET

734 APPENDIX D THE ARITHMETIC COPROCESSOR: DATA FORMATS, INSTRUCTIONS, AND PROGRAMMING

001E

001E

001E
0023
0029
002D
0031
0033
0036

003E
0040
0043

0045
0047
0049
004D
004F
0051
0055
0059
005F
0062

0063
0069
006C
006F

0075

007B
007D

0082

0087
0089

008E
0090
0093
0097
009cC
00a2
00A6
00AA
00AC
00BO
00B2
00B6
00BB
00BF
00C3

00C6

9B
81
D9
D9
D9
9B
25

BO
E8
D9

D9
D9
DB
DE
DS
D9

D9
OE
2E
06
E4
DF
450

2D
FFD
El

co
FC
16
El
El
1E

DISPS ENDP

‘

;A procedure that displays the

;in decimal form.

DISP PROC NEAR

3E 0004 R
0004 R 0COO
0004 R

0000 R

EO

0

4

0006 R

000A R

66| Al 0006 R
66| BB 0000000A

B9 0000

53

66| BA 00000000
66| F7 F3

80 C2 30

52

41

6A 2C

B9 0000

5A

8A C2

E8 FF8B

BO 2E

E8 FF84

66| Al 000A R
9B D9 3E 0004 R
81 36 0004 R 0COO
D9 2E 0004 R

D9 06 000A R

D9 F4

D9 1E 000A R

D9 El1

DB 1E 0006 R
66| 8B OE 0006 R
66| Al 000A R
66| C1 EO 09
66| D3 D8

66| F7 E3

FSTCW TEMP
OR TEMP, 0C00
FLDCW TEMP

H

FLD NUMB ;get NUMB

FTST

FSTSW AX

AND AX,4500H
.IF AX == 0100H

MOV AL, -’
CALL DISPS
FABS
.ENDIF
FLD ST
FRNDINT
FIST WHOLE
FSUBR
FABS
FSTP FRACT
MOV EAX,WHOLE
MOV EBX, 10
MOV CX,0
PUSH BX
.WHILE 1
MOV EDX, 0
DIV EBX
ADD DL, 30H
PUSH DX
.BREAK .IF EAX
INC CX
.IF CX == 3
PUSH P
MOV CX,0
.ENDIF
. ENDW
.WHILE 1
POP DX

.BREAK .IF DX
MOV AL, DL
CALL DISPS

. ENDW

MOV AL, ‘.’

CALL DISPS

MOV EAX, FRACT

FSTCW TEMP

XOR TEMP, 0COOH

FLDCW TEMP

FLD FRACT

FXTRACT

FSTP FRACT

FABS

FISTP WHOLE

MOV ECX,WHOLE

MOV EAX, FRACT

SHL EAX,9

RCR EAX,CL

.REPEAT
MUL EBX

BX

floating-point contents of NUMB

;save current control word
;set rounding to chop

;test NUMB
;status to AX
;jget C3, C2, and CO

;get integer part

;save fraction

;divide until quotient = 0

;display whole number part

;display decimal point

;save current control word
;set rounding to nearest

PROGRAMMING WITH THE ARITHMETIC COPROCESSOR - 735

00c9 66| 50 PUSH EAX
00CB 66| 92 XCHG EAX, EDX
00CD 04 30 ADD AL, 30H
00CF E8 FF45 CALL DISPS
00D2 66| 58 POP EAX

.UNTIL EAX == 0
00D9 C3 RET
00DA DISP ENDP

END

The last part of the procedure displays the whole number part, followed by the fractional part. The tech-
niques are the same as introduced earlier in the text—dividing a number by ten and displaying the remainders in
reverse order converts and displays an integer. A multiplication by 10 converts a fraction to decimal for dis-
playing. Note that the fractional part may contain a rounding error for certain values. This occurs because the
number has not been adjusted to remove the rounding error that is inherent in floating-point fractional numbers.

Reading a Mixed Number from the Keyboard

If floating-point arithmetic is used in a program, a method of reading the number from the keyboard and con-
verting it to a floating-point number must be developed. The procedure listed in Example D-11 reads a signed
mixed number from the keyboard and converts it to a floating-point number located at memory location NUMB.

EXAMPLE D-11

;A program that reads a mixed number from the keyboard.
;The result is stored at memory location NUMB as a
;double-precision floating-point number.

.MODEL SMALL

.386
.387
0000 .DATA
0000 00 SIGN DB ? ;sign indicator
0001 0000 TEMP1 DW ? ; temporary storage
0003 41200000 TEN DD 10.0 ;10.0
0007 00000000 NUMB DD ? ;result
0000 .CODE
GET MACRO ; ;read key macro
MOV AH,1
INT 21H
ENDM
. STARTUP
0010 D9 EE FLDZ ;clear ST
GET ;read a character
IF AL == '+’ : ;test for +
001A C6 06 0000 R 00 MOV SIGN, 0 ;clear sign indicator
GET
.ENDIF
.IF AL == '-' ;test for -
0027 C6 06 0000 R 01 MOV SIGN,1 ;set sign indicator
GET
.ENDIF
.REPEAT
0030 D8 OE 0003 R FMUL TEN ;multiply result by 10
0034 B4 00 MOV AH, 0
0036 2C 30 SUB AL, 30H ;convert from ASCII
0038 A3 0001 R MOV TEMP1, AX
003B DE 06 0001 R FIADD TEMP1 ;add it to result

GET ;get next character

736 APPENDIX D THE ARITHMETIC COPROCESSOR: DATA FORMATS, INSTRUCTIONS, AND PROGRAMMING

.UNTIL AL < ‘0’ || AL > ‘9’
IF AL == ' .’ ;do if -
004F D9 ES8 FLD1 ;get one
.WHILE 1
0051 D8 36 0003 R FDIV TEN
GET
.BREAK .IF AL < ‘0’ || AL > '9~
0061 B4 00 MOV AH, 0
0063 2C 30 SUB AL, 30H ;convert from ASCII
0065 A3 0001 R MOV TEMP1, AX
0068 DF 06 0001 R FILD TEMP1
006C D8 C9 FMUL ST, ST(1)
006E DC C2 FADD ST(2),ST
0070 D8 D9 FCOMP
. ENDW
0074 D8 D9 FCOMP ;clear stack
.ENDIF
.IF SIGN == 1
007D D9 EO FCHS ;make negative
.ENDIF
007F D9 1E 0007 R FSTP NUMB ;save result
.EXIT
END

Unlike other examples in this chapter, Example D-11 uses some of the high-level language constructs pre-
sented in earlier chapters to reduce its size. Here, the sign is first read from the keyboard, if present, and saved for
later use as a O for positive and a 1 for negative, in adjusting the sign of the resultant floating-point number. Next,
the integer portion of the number is read. The .REPEAT-.UNTIL loop is used to read the number until something
other than a number (0-9) is typed. This portion terminates with a period, space, or carriage return. If a period is
typed, then the procedure continues and reads a fractional part by using an .IF— ENDIF construct. If a space or car-
riage return is entered, the number is converted to floating-point form and stored at NUMB. The .WHILE-.ENDW
loop converts the fractional part of the number. The whole number portion is converted with a multiply by 10, and
the fractional portion is converted with a divide by 10.

QUESTIONS AND PROBLEMS

—

List the three types of data that are loaded or stored in memory by the coprocessor.
2. List the three integer data types, the range of the integers stored in them, and the number of bits allotted
to each.
3. Explain how a BCD number is stored in memory by the coprocessor.
4. List the three types of floating-point numbers used with the coprocessor and the number of binary bits
assigned to each.
5. Convert the following decimal numbers into single-precision floating-point numbers:
(a) 28.75
(b) 624
(c) 0.615
(d) +0.0
(e) -1000.5
6. Convert the following single-precision floating-point numbers into decimal:
(a) 11000000 11110000 00000000 00000000
(by 00111111 00010000 00000000 00000000
(c) 01000011 10011001 00000000 00000000
(d) 01000000 00000000 00000000 00000000

QUESTIONS AND PROBLEMS 737

10.
I1.
12.
13.
14.
15.
16.
17.
18.
19.

20.

21.

22.

(e) 01000001 00100000 00000000 00000000
(f) 00000000 00000000 00000000 00000000

. Explain what the coprocessor does when a normal microprocessor instruction executes.

Describe how the FST DATA instruction functions. Assume that DATA is defined as a 64-bit memory loca-
tion.

What does the FILD DATA instruction accomplish?

Form an instruction that adds the contents of register 3 to the top of the stack.

Describe the operation of the FADD instruction.

Choose an instruction that subtracts the contents of register 2 from the top of the stack and stores the result in
register 2.

What is the function of the FBSTP DATA instruction?

What is the difference between the FTST instruction and FXAM?

Which instruction stores the environment?

What does the FSAVE instruction save?

Develop a procedure that finds the area of a rectangle (A = L x W). Memory locations for this procedure are
single-precision floating-point locations A, L, and W.

Write a procedure that finds the capacitive reactance (XC = 1/20FC 1,). Memory locations for this procedure
are single-precision floating-point locations XC, F, and C1.

Develop a procedure that generates a table of square roots for the integers 2 through 10. The results must be
stored as single-precision floating-point numbers in an array called ROOTS.

Develop a procedure that finds the cosine of a single-precision floating-point number. The angle, in degrees,
is passed to the procedure in EAX and the cosine is returned in EAX. Recall that FCOS finds the cosine of an
angle expressed in radians.

Develop a procedure that takes the single-precision contents of register EBX times n and stores the result in
register EBX as a single-precision floating-point number. You must use memory to accomplish this task.
Write a procedure that raises a single-precision floating-point number X to the power Y. Parameters are
passed to the procedure with EAX = X and EBX = Y. The result is passed back to the calling sequence in ECX.

APPENDIX E
RISC MICROPROCESSORS

THE PERENNIAL ISSUE

The microprocessor, which is the CPU of the Personal Computer, is widely being used and is expected to perform
computation at a rapid speed. In order to do this, the microprocessors have to execute the instructions very fast.
These devices are sequential devices and they may be speeded up by increasing their clock rate. On the other side,
the microprocessor chips are becoming more and more smaller in size due to advanced nano-meter VLSI tech-
nology. The faster a microprocessor is operated the more power it consumes. This is because the rise time of the
digital signal is affected by the stray capacitances which develop across the interconnects in the IC. The close in-
terconnects have a potential difference which introduces a capacitance between them. The digital signals are sup-
posed to have a very short rise time but these capacitances increase the rise time as the clock frequency increases.
To make the capacitor charge fast, it should be charged through at a higher current. This increases the power con-
sumption of the microprocessor. Microprocessors which operate faster than 100 MHz need a heat sink to dissipate
their heat. As the clock frequency further goes up, the heating will also increase and the cooling has to be more
elaborate. Further, there will be a final limit at which the VLSI realization becomes difficult, if not impossible.
This could happen when interconnect distances become closer lesser and closer in the IC, as could be encountered
in nano/pico meter VLSI design. What is the other way to make microprocessors compute faster? This is a ques-
tion which has many answers. However the following sections provide a solution.

EVOLUTION OF RISC MICROPROCESSORS

Sometime in the early 1970s a study was conducted on the instruction set used in computers. This brought to light
that more than 50 percent of the instructions used in machine code/assembly language programs were of data
transfer. Further, about 20-25 percent of the entire instruction set of the computer was used in the programs. This
left 75-80 percent of the instruction set as an appendage which could be removed. This concept was initiated at
IBM Research by John Cocke, and led to the view that a computer based on this philosophy would certainly be
less complex. The reduced complexity would result in a smaller number of electronic elements to build the CPU.
This would in turn result in enhancement of the speed of execution of the programs as the instructions are less
complex.

By the early 1980s this philosophy was reasonably understood and it was called Reduced Instruction Set Com-
puter. This was usually referred by the acronym RISC and was coined by a computer architecture researcher and
Professor at University of California Berkley, David Patterson. This was during a study of the architecture of In-
struction Set termed as the Instruction Set Architecture (ISA). The concept behind ISA was to reduce the control

738

EVOLUTION OF RISC MICROPROCESSORS 739

logic and enhance the CPU performance by improved Instruction processing, pipelining, and faster clock rates.
The ISA concept was to reduce the burden of the hardware which was to be shared by the compiler.

Simpler Decoder

RISC philosophy meant that the Instruction Set is reduced to the most commonly used instructions. Further, the
memory accesses were reduced to only two types: LOAD and STORE, which are instructions fetching data from
memory directly, avoiding complex addressing modes. This also reduced the execution time as most data transfer
was between the CPU registers.

Single Cycle Instruction Execution

Most of the instructions were made of equal length and preferably the word size of the microprocessor. Many of
them were made to execute in one clock instruction cycle. This made the execution unit simpler and it was fully
used without wait states.

The instruction decoder is a complex piece of combinational logic and sometimes a stored program compo-
nent is also present. This reduction in complex instructions followed by making most of the instructions of same
width and single cycle execution, the decoder became less complex and occupied lesser space on the chip. Further
in the RISC philosophy the stored program component (micro-program ROM) was eliminated making it hard
wired control. The RISC architecture brought about a change in CPU design and there was now more space on the
microprocessor chip.

Registers, Memory and Cache’s (Larger Number of Registers than the CISC)

To further utilize this advantage of more free area more registers were added. The registers were used by the data

movement instructions and there were very few memory references needed. The registers are also memory ele-
ments but with a difference. The registers are directly accessed by the microprocessor without having to generate
effective address as in the case of memory. So access to the register takes far less time than a memory access, thus
contributing to faster data movement. Accessing memory takes extra time as the address lines are to be activated
through a clock sequence.

Cache is also memory with a difference; it is faster and matches the microprocessor speed as it is made of
the same material. Further, there is a faster separate bus used for accessing it. Registers are used by the micro-
processor to facilitate the instructions performing their operations, whereas cache stores information as user data
or program instruction which is under immediate use. RAM is the slowest and cheapest of the other two and is
used like the cache but the instructions and data it contains need not be in immediate use. Registers are usually
small in number and so cannot be used for user data. This makes the caches the next best choice as compared to the
slower RAM and ROM. Registers are directly accessed by the microprocessor almost at the speed of the micro-
processor whereas cache needs a bus. That is the reason why in classification of memory registers are LO; cache, if
on chip, is L1; off chip cache is L2; and so on. The L0 memory is faster than L1, and as the sequence goes the
speeds become lower and so do the costs and quantity.

Pipelining

Pipelining, another way to speed up computing, is enhanced by the property of RISC instructions which have
equal execution time. Multiple instructions are overlapped during execution and so the execution units are
fully utilized. This is somewhat like a mason (execution unit) receiving bricks (instructions) from the line of
labourers (machine cycle units). It is a technology used on modern microprocessors to enhance their perform-
ance. The computer pipeline is divided in stages (machine cycle). Each stage completes a part of an instruction
in parallel. The processor works on different stages of the instruction at the same time; more instructions can
be executed in a shorter period of time. Pipelining increases instruction through put and not reduce their exe-
cution time.

740 APPENDIX E RISC MICROPROCESSORS

The processing of any instruction by the microprocessor can be broken down into a series of four simple
steps, which each instruction in the code stream goes through in order to be executed:

Fetch : Read the instruction from memory.

Decode : Decode the instruction and fetch the source operand(s).
Execute : Perform the operation specified by the instruction.
Write : Store the result(s) in the destination location.

The above four steps get repeated over and over again until the processor finishes executing the program.
An instruction starts out in the fetch phase, moves to the decode phase, then to the execute phase, and finally to the
write phase. The sequence of events for the above case is given in the figure below. Four instructions are in
progress at any time, assuming that there are four separate hardware units and each are capable of doing their tasks
simultaneously. Notice that without the pipelining, it would have taken 8 cycles for 2 instructions to execute. With
pipeline, it takes only 5 cycles.

The pipeline size depends on the machine cycles that the instruction is made up of. It is most effective in
RISC systems as most instructions execute in same time and single clock.

Instruction 1 | Instruction 2 Instruction 3

A

Instruction 1 No Overlap

Instruction 2
Instruction 3

Time

Overlap

FIGURE E-1 Instruction execution without and with pipelining.

Cycle 1 2 3 4 5 6 7 8
Number
Instruction
i F D E w
i+1 F D E w

(a)

EVOLUTION OF RISC MICROPROCESSORS 741

Cycle 1 2 3 4 5 6 7 8
Number
Instruction
i F D E w
i+1 F D E w
i+2 F D E w
i+3 F D E W
i+4 F D E w
(b)
Cycle 1 2 3 4 5 6 7 8
Number
Instruction
i F D E W
i+l F X X D E w
i+2 F D E w
(c)

FIGURE E-2 (a) Execution without Pipeline (b) Pipelined Execution (c) Effect of fetch
operation taking more than one clock cycle (X is the wait cycle).

742 APPENDIXE RISC MICROPROCESSORS

Super Scalar RISC design

The advantage of more space on the chip, the fixed instruction size and the single cycle of execution brought
about the possibility of having multiple execution units which operate at the same time in parallel, and so ex-
ecute

multiple instructions in one clock cycle. This was a good development but had an issue. If, for example, there
are three execution units E1, E2, and E3 which process three sequential instructions I1, I2, and I3 in one clock
cycle, then the CPU would have three times more speed of computation. Let, for example, instruction I2’s data
(available in a register), after its execution, be used by instruction I3. If, for any reason, instruction I2 gets de-
layed in execution (one possibility may be that 12 is a floating point instruction which got delayed because the
arithmetic coprocessor encountered an error), the instruction I3 will take the un-updated data, thus causing a
computational error. This effect is called score-boarding. Such a situation is to be avoided, so sticking to equal
instruction lengths and execution times is a must. One way to prevent such error is to ensure that the parallel
execution is completed only after the registers are updated.

Branch Prediction Logic

Whenever a microprocessor encounters a conditional Jjump, a number of associated things happen. First, if the con-
dition is true and a branch is to be taken then the cache, both instruction and data cache, are to be flushed out and
new values loaded into the caches. If there was a way to predict a while before the conditional branch instruction
is taken then the microprocessor could ignore or flush the cache depending on taking or not taking the branch. This
is based on a statistical approach and has been known to give 70-90% accuracy. This saves a lot of computational
time.

High Level Language Support

The RISC microprocessors can give good support to high-level languages as they have abundant registers.
One such technique is called Register Windowing found from the beginning in the SPARC processor.

Register Window. A large number of registers are available on the SUN SPARC and these registers are
divided into various groups. Each group containing four sets of eight registers INREGS, OUTREGS,
LOCALREGS, and GLOBALREGS. The operating system assigns a group of registers to processes which
are running for facilitating their passing parameters through the INREGS and OUTREGS. Procedures are
assigned individual window consisting of these register file sets. The base of this window is pointed at by
the Current Window Pointer which is located in the CPU’s status register.

If the currently running procedure is assigned the register window RW1 which contains register K,
k+, k+2, K+n where n is the n+1th register, a current window pointer (CWP) points to the base of the cur-
rent register window RW1. The CWP would be incremented for assigning the next procedure's register
window. The calling and called procedure have overlapping register sets. The OUTREGS of previous pro-
cedure will overlap the INREGS of the current procedure. This makes parameter passing very efficient. The
overlapping is done as illustrated in the figure given below.

RISC processors have good regularization factor, so abundant registers can be incorporated. Due to
use of register windows no external memory reference was needed, not even the stack, which speeded up the
program execution time. This, however, put a burden on the operating system to assign the registers to the
various processes while loading them for execution which is done only once so there is no detrimental af-
fect.

Further, the instructions were of three operands; that is, for adding two numbers and storing the result,
this could be an instruction- ADD RS, R6, R7. Add the contents of RS to R6 and put the result in R7. All
registers had access to ALU so they could function as the accumulator.

RISC VERSUS CISC 743

K W CWP K 1 CWP
K+1 K+1
. RW1 .
K+n-1 K+n-1
K+n : K+n a
K+n+1 K+n+1
RW2
. Overtapping registers ..
K+2n-1 K+n-8..Kn-1 = OUTREGS previous K+2n-1
K+n....K+n+7 = INREGS current
K+2n K+2n
/ J

(@) (b)

FIGURE E-3 The assignment of registers to windows. (b) Overlapping of INREGS and OUTREGS of
two adjacent windows RW1 and RW2.

RISC VERSUS CISC

Realisation

RISC AND VLS! Realization. The decoder of a RISC processor is simpler and so is its control unit. This brings
about an advantage in the VLSI realization of the RISC CPU’s.

TABLE E-1 Advantages and disadvantages of RISC and CISC

CISC

RISC

Emphasis on hardware

Emphasis on software

Includes multi-clock complex instructions

Single-clock, reduced instruction only

Memory-to-memory: "LOAD" and "STORE"
incorporated in instructions

Register to register: "LOAD" and "STORE"
are independent instructions

Small code sizes, high cycles per second

Low cycles per second, large code sizes

No extra features on CPU chip

Many varieties of peripheral controllers on chip

Hardware is costly and compiler is simpler

Hardware is simpler and compiler is complex

Hardware is repetitive in cost systems are more
expensive

Software is not repetitive in cost so systems are
less expensive

Takes time to market

Quicker to the market

744 APPENDIX E RISC MICROPROCESSORS

Control Area. The area occupied by the control unit, which is called the control area is reduced to a great
extent, and thus provides more space. It is usually around 10% of the VLSI chip area. T ypically CISC processors
have about 60 to-70% control area of the VLSI chip. This saving in space may be utilized to provide built-in
peripheral controllers and coprocessors and other features like caches, /O ports , memory management units,
timers. In fact, many microcontrollers adopt RISC features as they need lots of space on chip for the peripheral
components.

Regularization Factor

VLSI EDA tools provided a large variety of building blocks. These building blocks are drawn out of a library.
The library of these blocks consists of registers, arithmetic and logic units, counters, shift registers and many more
modules. The ratio of the total number of devices (except ROM) on the chip and the number of drawn devices is
called the realization factor. The registers form the maximum number of devices in control area so the regulariza-
tion factor is very high. Generally a higher realization factor reduces the cost of VLSI design.

Increased Registers. The reduced control area, the increased regularization factor further permit use of larger
number of registers.

CURRENT RISC MICROPROCESSORS: AN OVERVIEW

The RISC computer system designers were always faced with an opposition that the advantages of RISC were not
commensurate with the sacrifice of the CISC. In spite of this strong controversy, quite a lot of microprocessors
have been designed based on RISC philosophy. They are as follows:

IBM RISC801

Inte 1860

Digital equipment ALPHA 21064
corporation

IBM/Motorola /Apple POWERPC
MIPS Rx000
Advanced Risc ARM7
Microprocessors

Most of these, though based on RISC philosophy, do not adhere strictly to the principles of RISC. Their
success through RISC is via proven performance. Many of the above mentioned microprocessors are super scalar
and have two issue pipelines. The RISC processors are used in workstations and real-time embedded systems,
and are universal in every field of application. Many microcontrollers are nowadays RISC based.

Overview of Some RISC Processors

Power PC. This is a microprocessor developed by three companies Apple-IBM-Motorola in 1991 based on the
RISC architecture. This alliance of three companies was called the AIM. This is an offshoot of the IBM’s
Performance Optimization with Enhanced RISC which was an offshoot of IBM's ROMP (Research Office Micro
Processor). The features of POWERPC are as follows:

® User Instruction and Architecture

@ Virtual Environment Architecture

@ Operating Environment Architecture

® Operates in USER and SUPERVISOR modes

SUMMARY 745

@ Has 32 general purpose registers called GPRO PR32. MSB is numbered as 0 and the LSB is numbered as 31
® Supports both BIG and LITTLE endian byte ordering

© Has a 64-bit time base register instead of a real-time clock

@ Has built-in floating point unit

® Has an elaborate Condition Code register

® POWERPC is quite popular in the embedded systems arena.

SUN SPARC

Manufactured by SUN Microsystems Inc. and kept as open architecture in their web site, it has versions starting
from "low cost" to thirty times "low cost”. The starting versions have over 50 registers scalable as the name says
to 300 or so. The windowing of the registers is the HLL support imparted by SPARC. It is a 32-bit processor and
also has certain registers which are hardwired for zero. The instruction formats supported are CALL, BRANCH,
and OPERATE (Register to register). It has a built-in floating point processor.

ALPHA 21064

Digital Equipment Corporations contribution to the high-end RISC market is the DEC ALOHA 2106 series. This
is 64-bit processor, supports the RISC philosophy, and has features like instruction level parallelism, two issue
superscaler, floating point unit, and memory management unit. It has two sets of 64-bit registers, thirty-two in
number, one set for FPU and the other for instruction unit. Two registers are hardwired to zero. Support VAX
floating point format along with the IEEE format. The instruction formats are five:

® Memory Instruction Format

@ Branch Instruction Format

@ Operate Instruction Format

@ Floating Point Instruction Format

® PAL Code Instruction Format
PAL is a library of extended processor functions built in and called Privilege Architecture Library.

SUMMARY

The need for speeding up the computation is expressed as a perennial issue. The clock can make the CPU speed
up but has a lot of related issues cropping up. Another way is to streamline the organization of the CPU to be able
to speed up computation. RISC was a philosophy which started surfacing in early 1970s and matured in the minds
of the computer designers by 1980s. First of all the instruction set was reduced making the control unit and the in-
struction decoder simpler than in the CISC processor. Further, the microprogramming was removed and hard-
wired logic was used bringing further space on chip. Next it was thought that the execution of the instruction
should be done in a single cycle while also keeping the size of the instruction the same as the CPU's width. Avoid
memory access as much as possible and have only LOAD STORE instruction for memory accesses and incorpo-
rate many CPU registers for data manipulation. This made the control area small on the chip and the registers
stepped up the regularization factor. This paved the way for adding peripheral to the chip like floating point units,
1/O ports and so on. Instruction pipelining could be most efficient in RISC as the instructions execute in equal
times. In some cases, multiple execution units were used and these turned up as super scalar RISC processors.
However, the problems in multiple execution units like score-boarding would not affect an RISC CPU. To support
the faster execution of compilers and facilitate parameter passing between procedures register windowing was in-

746 APPENDIX E RISC MICROPROCESSORS

corporated. The various manufacturers of RISC CPU's were introduced followed by an overview of some typical
RISC processors.

QUESTIONS AND PROBLEMS

. Why does the CPU get hot when the clock frequency is above 100 MHz?
. What brought about the concept of reduced instruction set?
. Why is it that complex instructions are more in an instruction set of general purpose microprocessor?
. Which type of instructions are used the most often?
What do the LOAD and STORE instructions perform with respect to the RISC principles?
. Why do the control unit and the decoder become smaller in RISC machines?
. Why are many registers used in RISC machines?
. What is the meaning of Control Area and Regularization Factor?
9. Why does pipelining work effectively in RISC processors?
10. If there are 6 machine cycles, what is the depth of the pipeline?
11. What is score-boarding?
12. Based on question number 10, how many clocks will be needed to complete 6 instructions?
13. What is register windowing?
14. Give the name of the RISC processor which has priviledge architecture library on chip.
15. Which RISC processor supports both BIG ENDIAN and LITTLE ENDIAN?
16. Which RISC processor uses the concept of register windowing?

NN W -

APPENDIX F

Answers to Selected Even-Numbered
Questions and Problems

CHAPTER 1

2. Herman Hollerith

4. Konrad Zuse

6. ENIAC

8. Augusta Ada Bryon

10. A machine that stores its program in the memory system.

12. Over 100,000,000

14. 16M

16. 1993

18. 1999

20. Millions of instructions per second

22. lora0

24. 1024K

26. About 1,000,000

28. 640K

30. IM

32. 80386, 80486, and Pentium (Note that the Pentium Pro through Pentium 4 address 64G)
34. (a) 13.25 (b) 57.1875 (c) 43.3125 (d) 7.0625
36. (a) 163.1875 (b) 297.75 (c) 172.859375 (d) 4,011.1875 () 3,000.0578125
38. (a) 0.101,, 0.5, and 0.D, (b) 0.00000001,, 0.002,, and 0.01, (<) 0.10100001,, 0.502g;, and 0.AL, (d) 0.11,,

0.6, and 0.C 4 (€) 0.1111,, 0.745, and O.F

40. (a) C2 (b) 10FD (c) B.C (d) 10 (e) 8BA
42. (a)0111 1111 (b) 0101 0100 (¢) 0101 0001 (d) 1000 0000
44. (a) 46 52 4F 47 (b) 41 72 63 (c) 57 61 74 65 72 (d) 57 65 6C 6C
46. MESS DB ‘What time is it?’
48. (a) 0000 0011 1110 1000 (b) 1111 1111 1000 1000 (c) 0000 0011 0010 0000 (d) 1111 0011 0111 0100
50. (a) 34 12 (b) 22 Al (c) 00 Bl
52. DATA2 DW 123AH
54. (a)-128 (b) +51 (c) 110 (d) -118
56. (a) 0 01111111 10000000000000000000000

(b) 1 10000010 01010100000000000000000
(c) 0 10000101 10010001000000000000000
(d) 1 10001001 00101100000000000000000

747

748 APPENDIXF ANSWERS TO SELECTED EVEN-NUMBERED QUESTIONS AND PROBLEMS

CHAPTER 2

36.
38.

40.
42.
44,
46.

. 16 bits

EBX

- The instruction pointer is used by the microprocessor to locate the next instruction in a program.

No

. The interrupt flag (I)

. In the real mode, a segment register locates the start of a 64K-byte memory segment.
- (a) 12000H (b) 21000H (c) 24A00H (d) 25000H (e) 3F12DH

. ES:DI

. Stack segment plus the stack offset

(a) 12000H (b) 21002H (c) 26200H (d) A1000H (e) 2CAQ00H

. Any location between and including 000000H-FFFFFFH
. The segment register contains a selector that chooses a descriptor from either the local or global descriptor

table. It also contains the requested privilege level.

. AOOOOOH-AQ01000H
. Base address = 00280000H and end address = 00290FFFH

3

. 64K bytes

The LDT is addressed through the local descriptor table register.

The program invisible register is the cache portion of the segment register, the task register, and also the de-
scriptor table register.

4K bytes

1024

Page directory 000H and page table entry 200H

The TLB stores the last 22 linear-to-physical address translation from the paging unit.

CHAPTER 3

NN

14.
16.
18.
20.
22.
24.

AH, AL, BH, BL, CH, CL, DH, and DL
EAX, EBX, ECX, EDX, ESP, EBP, EDI, and ESI

. You may not mix register sizes.
- (a) MOV EDX,EBX (b) MOV CL,BL (c) MOV BX,SI (d) MOV AX,DS (¢) MOV AH,AL
10.

#

.CODE

Opcode field

This is an assembly language directive that returns control to DOS.

The .STARTUP directive loads the DS register with the segment address of the data segment.
The [] symbols denote indirect addressing.

Memory-to-memory transfers are not allowed.

MOV WORD PTR [D]],3

ANSWERS TO SELECTED EVEN-NUMBERED QUESTIONS AND PROBLEMS 749

26.

28.
30.
32.
34.

The MOV BX,DATA instruction copies the contents of a data segment memory location DATA into BX,
while the MOV BX,OFFSET DATA instruction loads BX with the offset address of DATA.

Nothing is wrong with this instruction; this is an alternate to MOV AL,[BX+SI].

(a) 11750H (b) 11950H (c) 11700H

BP/EBP

FIELDS STRUC

F1l Dw ?
F2 DW ?
F3 oW ?
F4 Dw ?
F5 Dw ?

FIELDS ENDS

36. Direct, indirect, and stack
38. The intrasegment jump is within a segment, while the intersegment jump is to any location in the memory
system.
40. 32-bit
42. Short
44. JMP BX
46. Two bytes are stored for a 16-bit PUSH and 4 by a 32-bit PUSH.
48. AX, CX, DX, BX, SP, BP, DI and SI
50. PUSHFD
CHAPTER 4
2. The W bit selects either a byte (W =0) ora word/doubleword (W = 1). The D bit selects the direction of flow
between the register field and the register/memory field.
4. DL
6. DS:[BX+DI]
8. MOV AX,DI
10. 8B 7702
12. You should never change CS without also changing IP. This instruction would most likely cause the system to
crash because only the segment portion of the address of the next instruction is changed.
14. 16-bit
16. AX, CX, DX, BX, SP, BP, SI, and DI
18. (a) The PUSH AX instruction pushes the contents of AX onto the stack. (b) The POP ESI instruction removes
a 32-bit number from the stack and places it into ESI. (c) The PUSH [BX] instruction pushes the 16-bit con-
tents of the data segment memory location addressed by BX onto the stack. (d) The PUSHFD instruction
pushes the EFLAG register onto the stack. (¢) The POP DS instruction removes a 16-bit number from the
stack and places it into the DS register. (f) The PUSHD 4 instruction places a 32-bit number 4 onto the stack.
20. The PUSH EAX instruction places bits 31-24 of EAX into memory location 20FFH, bits 23~-16 into 20FEH,
bits 15-8 into 20FDH, and bits 7-0 into 20FCH. After the data are stored, the contents of SP are decremented
to four, which results in 20FCH.
22. One possibility is 200H in both registers.
24. The MOV using the OFFSET is more efficient than the LEA instruction for all microprocessors prior to the Pen-
tium.
6. This instruction loads DS and BX with the 32-bit number stored at memory location NUMB.
28. MOV BX,NUMB

MOV DX, BX
MOV SI,BX

750 APPENDIX F ANSWERS TO SELECTED EVEN-NUMBERED QUESTIONS AND PROBLEMS

30.
32.

34,

36.

38

40.
42,

46.
48.
50.
52.
54.

56.

The CLD instruction clears direction and the STD instruction sets it.

The LODSB instruction copies the contents of the data segment memory location addressed by SI into AL.
Next, the contents of SI are either incremented or decremented by a 1, depending on the state of the direction
flag.

The OUTSB instruction outputs the contents of the data segment memory location addressed by SI to the I/O
port addressed by DX. Next, the contents of SI are either incremented or decremented by 1, depending on the
state of the direction flag.

MOV SI,OFFSET SOURCE

MOV DI,OFFSET DEST

MOV CX,12

REP MOVSB

The XLAT instruction adds the contents of AL to the contents of BX to form a data segment offset address
that loads a byte of data from a table into AL.

The IN AL,12H instruction inputs a byte of data from I/O port 0012H into AL.

The segment override prefix allows the default segment to be changed to any other segment.

. XCHG AX,BX

XCHG CX, DX
XCHG SI,DI

The DB directive is used to define or store bytes, DW defines words, and DD defines doublewords.

The EQU directive allows one label to be equated to another or a constant.

The MODEL directive identifies the type of memory model used to generate a program.

Full segment definitions

The PROC directive indicates the start of a procedure and the ENDP directive indicates the end of a proce-
dure.

COPS PROC FAR
MOV AX,CS:DATAl
MOV BX, AX
MoV CX,AX
MOV DX, AX
MOV SI,AX
RET
COPS ENDP

CHAPTER 5

IS

10.
12.
14.
16.
18.
20.

. You may not mix register sizes.
. Sum=3100H,C=0,A=1,8=0,Z=0,and 0 =0

ADD AX,BX
ADD AX,CX
ADD AX,DX
ADD AX, SP
MOV DI,AX

. ADC DX,BX

The assembler cannot determine whether the memory location is a byte, word, or doubleword.
Difference =81H,C=0,A=0,S=1,Z=0,and 0 =0

DEC EBX

Both instructions are identical, except that the CMP instruction does not change the destination.
The product is found in DX:AX, where DX is the most significant part,

MoV DL, 5

MoV AL, DL

MUL DL

MUL DL

ANSWERS TO SELECTED EVEN-NUMBERED QUESTIONS AND PROBLEMS 751

22.
24.
26.
38.
30.
32.

34.
36.
38.

40.
42.
44.
46.

48.
50.

AX

If an overflow or divide by zero error occurs, the microprocessor executes a divide error interrupt.
AH

DAA (BCD addition) and DAS (BCD subtraction)

AAM converts AX to BCD by dividing it by a 10. The result (00-99) is found in AH and AL.
PUSH AX

MOV AL,BL

ADD AL,DL

DAA

MOV DL, AL

MoV AL,BH

ADC AL,DH
DAA

MOV DH, AL
POP AX
ADC AL,CL
DAA

MOV CL,AL
MOV AL,AH
ADC AL,CH
DAA

MOV CH, AL
MOV BH, DH
AND BH, 1FH

MOV SI,DI
OR SI,1FH
OR AX,OFH

AND AX, 1FFFH
XOR AX, OEOH

TEST CH, 4 or BT CH, 2

(a) SHR DI, 3 (b) SHL AL, 1 (c) ROL AL, 3(d) SAR DH, |

Extra

The REPE prefix continues to compare while an equal outcome from the comparison occurs or while CX is
not equal to a zero.

The CMPSB instruction compares the byte contents of two memory locations.

The letter C is displayed on the video screen.

CHAPTER 6

. A near JMP

A far JMP

(a) near (b) short (c) far

EIP/IP

The JMP AX instruction is a near jump to the offset address loaded in AX.

The JMP [DI] instruction is a near jump that obtains the jump address from the data segment memory location
addressed by DI. The other JMP is a far jump.

. JA is the jump above instruction that jumps if the destination is above the source.
. JE, JNE, JG, JGE, JL, and JLE
. JBE and JA

MOV DI,OFFSET DATA
CLD
MOV CX,150H
MOV AL, 0
AGAIN:

752 APPENDIXF ANSWERS TO SELECTED EVEN-NUMBERED QUESTIONS AND PROBLEMS

24.

26.

28

30.

32.
34.
36.

38.
40.
42.

44,
46.
48.

STOSB
LOOP AGAIN

CMP AL, 3
JNE 20000
ADD AL, 2

?20000:

MOV SI,OFFSET BLOCKA
MOV DI,OFFSET BLOCKB
CLD

.REPEAT
LODSB

STOSB

.UNTIL AL==

MOV SI,OFFSET BLOCKA
MOV DI,OFFSET BLOCKB
CLD

MOV AL, O

.WHILE AL!=12H

LODSB

ADD AL,ES: [DI]

STOSB

. ENDW

Both instructions store the return address on the stack, and then jump to the procedure. Note that the return ad-
dress for a near CALL is EIP/IP, and the return address for the far CALL is EIP/IP and CS.

RET

By using NEAR or FAR to the right of the PROC directive.

CUBE PROC NEAR USES AX DX

MoV AX,CX
MUL CX
MUL CX
RET

CUBE ENDP

INT, INTO, and DIV (if an error occurs)
Interrupt type number 0 is used for a divide error.

The IRET pops the return address from the stack, as does a RET, but it also pops the flags, which RET does
not.

INTO interrupts a program if the overflow flag is set.

The STI instruction enables the INTR pin and the CLI instruction disables INTR.

Interrupt vector number 9

CHAPTER 7

2.

12.

14,

Sooo s

The result depends on the options set for the assembler, but the TEST.OBJ file is always generated while the
TEST.LST and TEST.CREF files can also be generated.

PUBLIC is used to declare that a label or even an entire segment is public to other modules.

NEAR PTR, FAR PTR, BYTE, WORD, or DWORD

. The MACRO directive starts a macro and the ENDM ends it.
. Parameters are indicated next to the MACRO statement. Parameters are placed in a program next to the name

of the macro, as operands.
The LOCAL directive must immediately follow the macro statement and must contain all labels used within
the macro sequence.

ADDM MACRO LIST,LENGTH
MOV CX, LENGTH
MOV SI,OFFSET LIST
MOV AX, 0
CLD

ANSWERS TO SELECTED EVEN-NUMBERED QUESTIONS AND PROBLEMS

16.

R1:

18.

20.

22.
24.
26.

28.

.REPEAT
ADD AX, [SI]
ADD SI,2
.UNTILCXZ
ENDM
RANDOM MACRO
LOCAL R1

INC CL
MOV AH, 6
MOV DL, -1
INT 21H
Jz R1
ENDM
DISP MACRO PARA
IFB <PARA>
MOV AH, 6
MOV DL, 13
INT 21H
MOV DL, 10
ENDIF
IFNB <PARA>
MOV DL, PARA
ENDIF
MOV AH, 6
INT 21H
ENDM
DIPS PROC NEAR
MOV AH, 6
MOV DL, -1
INT 21H
JZ DISP
.IF AL==0
PUSH AX
SHR AL, 4
ADD AL, 30H
.IF AL>'9’
ADD AL, 7

MOV AH, 6

MOV DL, AL

INT 21H

POP AX

AND AL, OFH

ADD AL, 30H

.IF AL>'9’
ADD AL, 7

.ENDIF

MOV AH, 6

MOV DL,AL
INT 21H

.ENDIF

RET

DISP ENDP

A large number is converted by repeated divisions by 10.

30H

753

A 30H is first subtracted from each digit, and then the most significant digit is multiplied by 100 and the

middle digit is multiplied by 10. The three are then summed to generate a binary value.

HEXAS PROC NEAR ;AL is converted
AND AL, OFH
MOV BX,OFFSET LOOK
XLAT CS:LOOK
RET
HEXAS ENDP
LOOK DB 30H, 31H, 32H, 33H
DB 34H,35H,36H,37H

DB 38H,39H,41H, 42H

754 APPENDIXF ANSWERS TO SELECTED EVEN-NUMBERED QUESTIONS AND PROBLEMS

DB 43H,44H, 45H, 46H
30. XLAT SS:LOOK
32. .MODEL TINY
.CODE

DIsp MACRO PARA
MOV DL, PARA
MOV AH, 6

INT 21H
ENDP
. STARTUP

MOV CX, 8

.REPEAT
DISP 13
DISP 10
DISP c

MOV AL, 8
SUB AL,CL
ADD AL, 30H

DISP AL
DISP 13
DISP 10
DISP r2’
DISP e
DISP r=

MOV AX,100H
SHR AX,CL
.IF AL>99

DISP 1
SUB AL, 100
AAM
ADD AX,3030H
DISP AH
DISP AL
ELSE
AAM
IF AH!=0
ADD AH, 30H
DISP AH
.ENDIF
ADD AL, 30H
DISP AL
-.ENDIF

UNTILCXZ
EXIT
END

CHAPTER 8

. As long as you don’t exceed a logic zero current of 2.0 mA, they are TTL-compatible.

. Address bits A7-A0.

. A logic 0 on RD indicates that the microprocessor is either reading data from memory or I/0.

. The CLK input must be a TTL-compatible square-wave with a 33% duty cycle.

. The WR signal indicates that the microprocessor has placed data on its data bus to be written to the

memory or an I/O device.

12. If DT/R is a logic 1, it indicates that the microprocessor’s data bus is transmitting data to the memory
or I/0.

14. S2-S0

16. The queue tracking status bits indicate the condition of the queue within the microprocessor for the

arithmetic coprocessor.

SO NN

ANSWERS TO SELECTED EVEN-NUMBERED QUESTIONS AND PROBLEMS 755

18. Three

20. 2.33 MHz

22. AD19-ADO

24. An eight-bit transparent latch (74LS373).

26. Buffers are required because of the drive current (2.0 mA) available at the output pins of the microprocessor.

28. Four

30. A read or a write

32. (a) State T1 is used by the microprocessor to provide the memory or I/O with the address. (b) State T2 pro-
vides access time to the memory and also is where the READY input is sampled. (c) State T3 is where the data
are sampled or sent to the memory or I/O. (d) State T4 is used to deactivate the control signals.

34. 400 ns (2 clocks)

36. This input is used to request wait states.

38. Minimum mode is used unless the system must contain the arithmetic coprocessor; then we use the maximum
mode.

40. The microprocessor is free to obtain and execute normal microprocessor instructions while the coprocessor
executes a COprocessor instruction.

42. The FSTSW AX copies the status register into the AX register.

44. After executing the FCOMP ST(2) and FSTSW AX instructions, the SAHF instruction copies the AH register
into the flag register (F7-F0). This allows the condition jump instruction JE to be used to test for equality.

46. FSTSW AX

48. Data are stored in eight 80-bit wide registers that are formed into a stack.

50. ST())

52. Affine allows positive or negative infinity, while projective does not.

CHAPTER 9

2. (a) 256 (b) 2048 (c) 4096 (d) 8192
4. The CS or CE pin on a memory device is used to select or enable the device so it can perform a read or a write

operation.

U1A
A17 — 1 2
74ALS04 , w2
A19 2
A18 3
A16 4
A15 g
Al4
A13 7 9
A12 1‘1’
A1
12
13
14
15
U1B 74ALS133
oM 4
74ALS04

FIGURE D-1

756 APPENDIX F ANSWERS TO SELECTED EVEN-NUMBERED QUESTIONS AND PROBLEMS

u2
1 15 40000H—41FFFH
Ald 23 YO P4~ 42000H-43FFFH
A5 3¢ v2 b 13 44000H-45FFFH
v3 b12_ 46000H-47FFFH
va 11— 48000H-49FFFH
A18 6 |G vs b—19_ 4A000H-4BFFFH
A19 4 d G2A Y6 Oi 4CO00H—4DFFFH
_50 G2B Y7 DL 4E000H-4FFFFH
uia 74ALS138
A17 —1
A16 —2
74ALS32
FIGURE D-2

6. The WE pin causes the memory to perform a write operation, provided that the CS or CE pin is also active.
8. The 5 MHz version of the 8088 allows 460 ns of time for the memory to access data. A 450 ns memory device
will only function if the amount time required for the address decoder and buffers in a system is less than 10
ns, which is unlikely.
10. The SRAM (static RAM) is a device that retains data for as long as power is applied to the memory device.
The SRAM can be read or written.
12. See Figure D-1
14. One of the eight outputs becomes a logic 0, as dictated by the A, B, and € address inputs.
16. See Figure D-2
18. The PROM address decoder is more suited to memory address decoding than the 74LS138 in many cases.
20. See Figure D-3

OE A8 A7 A6 A5 A4 A3 A2 A1 A0 (0] O1 02 03 04 O5 06 o7
0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1
0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1
0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 1 1 1
0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1
0 0 0 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1
0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 0 1
0 0 0 0 4] 1 1 1 1 1 1 1 1 1 1 1 1 0
22. EQUATIONS

/01 = A19 * /Al8 * Al7 * Alé * /Al1S * /Ald * /Al3

/02 = Al19 * /Al8 * Al7 * Al6 * /AlS * /Ald * A1l3

/03 = Al9 * /Al8 * A1l7 * Al6 * /Al5 * Al4 * /Al3

/04 = Al9 * /Al8 * Al7 * Al6 * /A1S * Ald * A13

/05 = A19 * /Al8 * Al17 * Al6 * Al5 * /Al4 * /Al3

/06 = Al9 * /A18 * Al7 * Al6 * AlS5 * /Ald * A13

/07 = Al19 * /Al8 * Al7 * Al6 * Al5 * Al4 * /Al3

/08 = Al9 * /Al8 * Al7 * Al6 * Al5 * Ald * Al3

24. See Figure D-3.

26. The BHE selects the upper memory bank and the A0 (BLE) signal selects the lower memory bank.
28. Either separate decoders or separate write control signals

30. Low

ANSWERS TO SELECTED EVEN-NUMBERED QUESTIONS AND PROBLEMS 757

vee
10K
us
A12 A Yop43—
A13 B v1pid—
At4 5 31c v2p13—
2 Y3pb——
U1A ;—_3—2 6 a1l
G1 Y5 p—5—
oM —H 2 L) o 4 1Goa vep——
p GoB v7p——
u1B |] 7415138
atg 3| 4 ¥
74ALS30
uic
A1e—51>06—
74ALS04
A18
A17
A5
WAIT
FIGURE D-3
2. The fixed I/O port is stored in the memory immediately following the opcode.

N

. Register AL
6. The OUTSB instruction copies the contents of the data segment memory location addressed by SI to the data
bus, where it is written to the I/O device addressed

by DX. After the transfer, the contents of SI are in- " L:\Z 15
cremented or decremented, as dictated by the direc- Q; —2 g w o__O}4
tion flag. A3 c Y2 °'_3_]2 s
. U1IA Y3
8. The difference between the memory-mapped /O BE 1 as—8 a1 % D-U—m
and the isolated I/O is that with isolated I/O, all 3 g G2A Y6 o%
memory locations are available to the system. G28 Y7
74ALS138

10. The basic output interface is a latch that holds data
output from the microprocessor.

12. Low bank

14. The contact bounce eliminator removes mechanical
bounces from a switch by using a latch or flip-flop. 74ALS32

16. See Figure D-4

18. See Figure D-5 FIGURE D—4
;Equations for Ul
EQUATIONS
/Ol = /U2 * /A4 * /A5 * /A6 * /AT * A8 * /A3 * /A2 * /Al * /MIO
/02 = /U2 * /A4 * /A5 * /A6 * /AT * A8 * /A3 * /A2 * Al * /MIO
/O3 = /U2 * /A4 * /A5 * /A6 * /A7 * A8 * /A3 * A2 * /Al * MIO
/04 = /U2 * /A4 * /A5 * /A6 * (AT * AB * /A3 * A2 * Al * /MIO
/O5 = /U2 * /A4 * /A5 * /A6 * /A7 * A8 * A3 * /A2 * /Al * /MIO
/O6 = /U2 * /A4 * /AS * /A6 * /A7 * A8 * A3 * /A2 * Al * /MIO
/07 = /U2 * /A4 * /A5 * /A6 * /A7 * A8 * A3 * A2 * /Al * /MIO
/08 = /U2 * /A4 * /A5 * /A6 * /A7 * A8 * A3 * A2 * Al * /MIO

;Equation for U2

758 APPENDIXF ANSWERS TO SELECTED EVEN-NUMBERED QUESTIONS AND PROBLEMS

u1 Ut
MIC 11 01 b-12 1000H-1001H Mi0 —n 01 12— 30004
Al 2l 2 02 b18_ 1002H-1003H At 21 02 b8 3008H
A2 33 03 o—g—1oo4H-1005H A2 313 03 b-1Z— 1005H
A3 ___ 414 04 b8 _1006H-1007H A3 ___dlia 04 p-18 1007H
Al__Slis 05 b 1008H-1009H gt Spa
% 717 07 T3 ia0cH-100DH e —Zr orpl-
AT —gi18 08 p—=—100EH-100FH A8 9] 1o p——
A8 — 10 —T1l 1o
110
16L8 16L8
U2
U2 —
BHE 11y o1 p12
A3 —3n 9lpgg A4 2l 02 pi8
= 12 02 p—s— A10 13 03 b1
A1l 13 03 1L A1 414 Q4 bl
A12 4114 04 p18 A2 __5], o8 b5
A13 215 05 18 A13 o Of b4
A4 615 06 b ﬂ A4 117 07 p S
LS [p— 07 13 A5 __81g 08 12
—8l8 08 p-12 — 909
——T%-m —1 o
ho 16L8
16L8
FIGURE D-6
FIGURE D-5
EQUATIONS

/02 = /A9 * /Al0 * /All * /Al2 * /Al13 * /Al4 * /AlS

20. See Figure D-6
;Equations for Ul

EQUATIONS

/01 = /U2 * /AS * /A5 * /A6 * /A7 * A8 * A3 * A2 * /Al * /MIO
/02 = /U2 * /A9 * /A5 * /A6 * /A7 * A8 * A3 * /A2 * Al * /MIO
/03 = /U2 * A9 * /A5 * /A6 * /A7 * A8 * /A3 * A2 * /Al * MIO
/04 = /U2 * A9 * /A5 * /A6 * /AT * AB * /A3 * A2 * Al * /MIO

;Equation for U2
EQUATIONS

/U2 = /BHE * /A4 * /A10 * /All * /Al2 * /Al3 * /Al4 * /AlS
22. D7-D0O
24. 24
26. Al and AO
28. See Figure D-7

EQUATION

/CS = /A15*/A14*/A13*/A12*/A11*/A10*A9*A8*AT*/A6*/A5*/A4*/A3*/MIO

30. Latched I/O (mode 0), strobed I/O (mode 1), and bi-directional I/O (mode 2)

32. Whenever a coil is energized, the current causes the permanent magnet armature to step (move) to the next posi-
tion.

34, Mov AL, OFH
OUT COMMAND, AL

36. The ACK signal is an output that signals that the data have been removed from the port.
38. 1IN AL, PORTC

TEST AL,16

JNZ FOR_A_ONE
40. PCO-PC2

ANSWERS TO SELECTED EVEN-NUMBERED QUESTIONS AND PROBLEMS

42.

58.
60.

62.

DO-D7
2?
34 4
341 po PAO
33 D1 PA1 3
3 A2
313 PA3 |1
55 D4 pas |40
£ D5 PA5 |39
D6 PAG |38
b7 PA7 3L
— 5| =— 18
RD —— RD PBO 2
WR —32- WR PB1 :
Q2 _8 ﬁo PB2 £y
Ut 1 — Al PB3 |
9 RESET —324 RESET PB4 |22
A3 10 01 b—g— cs PB5 |2
A4 <112 02 p—= PBE |24
AS S13 03 p PB7 |25
A 414 04p-l8
A7 2 15 05 PCO
A8 e 06 p—14 PC1 5
A9 &7 07 p—3 PC2
A10 18 08 p—= PC3 7
A1 1- 19 PC4 3
A12 110 PCs 12
PC6
_ 16L8 0
MO pcr
AO 82C55
A13
Al4
A15
FIGURE D-7

A display position is selected by changing the display position address found in the set address command.
. The busy line is tested by executing the busy flag command and then testing the most-significant bit.

46.
48.
50.
52.
54.
56.

10 ms to 20 ms
Two wait states.

An overrun error occurs if the internal FIFO fills before the data are input to the microprocessor.

See Figure D-8
10 MHz

See Figure D-9
MOV AL, OB6H
ouT 16H,AL
MOV AL, 64H
ouT 14H, AL
MOV AL, 00H
ouT 14H,AL

Least-significant

Asynchronous serial data are data sent without a clock pulse.

ouT

LINE, AL

;using a 1 MHz clock
MOV AL, 74H
ouT CONTROL, AL
MOV AL, 65H ;count of 101
ouT TIMER1, AL
MOV AL, O
ouT TIMER1, AL
. LINE EQU 023H
LSB EQU 020H
MSB EQU 021H
FIFO EQU 022H
MOV AL,10001010B

;enable Baud divisor

759

760 APPENDIXF ANSWERS TO SELECTED EVEN-NUMBERED QUESTIONS AND PROBLEMS

DO-D7
U2
2 pgo RLO 38—
21 DBI RLT 39—
DB2 RL2 1
\—2 o83 RL3
DB4 RL4
] DBs RL5
RL6
91 pa7 A7 |8
10| == 36
—19) @b SHFT
U2 11 37
A7 1 [a v —zz| 3B CNIST 23—
_ 218 v1p14 —3 ik a2
Wortqe v o TR MR
6 Y4 b1l —4 IRQ SL2 35—
A6 |8 a1 Y5 oi-g— SL3
= £ G2A Y6 p—5—
BLE[5des v7p—L- 940 8
74ALS138 OA2 |—£2
L OA3 [
= 0Bo (31
&1
0B3 |28
8279
FIGURE D-8
8 MHz
DO-D7
U3
7] 80
6 1 9
D2 CLK0d
i D3 Go H1—
D4 ouTo [HO—
31 ps f
21 b6 CLK1
U1A D7 G1 4
A3 1 3 RD 22 | 8H oumt
WR 231 WR CLK2<{-18
AS 2 A —J Ao G2 HS
74ALS32 u2 ” At out2
wls ekl o
A7 .3 | c Y2 b13 8254
Y312
6 Nl T
A4 G1 Y5 3
MIO 4 {Goa Y6 p——
— —SdgzB Y7 p——
BLE
74ALS138

FIGURE D-9

vCC

10K

ANSWERS TO SELECTED EVEN-NUMBERED QUESTIONS AND PROBLEMS

MOV
ouT
MOV
ouT

MOV
ouT

MOV
ouT

66.

761

AL, 60
LSB, AL
AL, O

MSB, AL

;program Baud rate

AL, 00011001B
LINE, AL

;program 7-data, odd
;parity, one stop

AL,00000111B
FIFO,AL

;enable transmitter and
;and receiver

Simplex = sending or receiving, but not both. Half Duplex = sending and receiving, but only one direction at

a time. Full Duplex = sending and receiving, both simultaneously.

68.

MOV

SENDS PROC NEAR

CX,16

.REPEAT
.REPEAT

.UNTIL
LODSB

ouT

IN AL, LSTAT
TEST AL, 20H
! ZERO?

;get line status register
;test TH bit

;get data

DATA, AL ;transmit data

.UNTILCXZ

RET

SENDS ENDP

70. 0.01V

72.
.CODE
. STARTUP
MOV
.WHILE
MOV
MOV

.MODEL TINY

DX, 400H
1

CX, 256
AL, O

.REPEAT
ouT
INC
CALL
.UNTILCXZ
MOV CX, 256
.REPEAT
ouT
DEC
CALL
.UNTILCXZ
. ENDW
DELAY PROC

DX, AL
AL
DELAY

DX, AL
AL
DELAY

NEAR

39 microsecond time delay

DELAY ENDP

END
The INTR pin indicates that the converter has completed a conversion.
See Figure D-10

;equations for Ul

74.
76.

EQUATIONS

/AlS*/A14*/A13*/A12*/All*/AlO*AQ*/A8*/A7*A6*A5*/A4*/A3*/A2*/A1*/BLE
/AlS*/A14*/A13*/A12*/A11*/AlO*AQ*/A8*/A7*A6*A5*A4*/A3*/A2*/Al*/BLE

/01
/08

762 APPENDIX F ANSWERS TO SELECTED EVEN-NUMBERED QUESTIONS AND PROBLEMS

DO-D7
U3
ﬁ; . 8 D80 vi+ 8
A3 N\—1& bB2 7
A5 \—74] DB3 V-
A6 3| DB4 19
Ul 5— DB5 CLKR
BLE _1I'y o1 p12 P
RlE &b He T
Ko gl SipE a5 Rl
A2 7 :g 8? C13 MWTC INTR AGND
A3 _Blig Osp12 ADC0804
A4 __ 9] g
At5 ___11] 110
16L8 1
Do 3 /l/ 2
U2A
7415125
FIGURE D-10
CHAPTER 11
2. An interrupt is a hardware-initiated subroutine call.
4. Interrupts free processing time because the only time the processor is used is when the interrupt is active. This
means that no time is wasted polling an I/O device.
6. INT, INTO, IRET/IRETD, CLI, STI
8. In the first 1K-byte at location 00000000H-000003FFH

10. Vectors 00H-1FH are reserved, even though some are used in the personal computer for other purposes.

12. The interrupt descriptor table is located anywhere in the memory system, as addressed by the interrupt de-
scriptor-table register.

14. The main difference is the location of the interrupt vector. The real mode interrupt uses a vector from a table
in the bottom 1K byte of memory, while the protected mode interrupt uses a descriptor from any location in
the memory system. The other difference is that the protected mode interrupt service procedure can be placed
anywhere in the memory system.

16. The INTO instruction interrupts a program only if the overflow flag bit is set.

18. The IRET instruction functions as a far RET, except that before the return occurs, data from the stack are
popped into the flag register.

20. The flags are pushed onto the stack, the I and T flag bits are cleared to zero, and the interrupt service proce-
dure is called using a vector from the interrupt vector table.

22. The trace or trap flag is set to enable tracing. Tracing is an interrupt that occurs after each instruction is exe-
cuted to allow software to trace through a program.

24. The only way to clear or set the trace flag is to obtain an image of the flag register, and then change the trace
bit to a zero or a one before returning the value back to the flag register. There is no instruction to set or clear
the trace flag.

26. The INTA signal is only active in response to the INTR input.

28. The NMI input is both level and edge-sensitive.

30. A FIFO is a first-in, first-out memory system that stores data in the FIFO order. We sometimes also call a

FIFO a queue.

ANSWERS TO SELECTED EVEN-NUMBERED QUESTIONS AND PROBLEMS 763

32.
34,

See Figure D-11

A daisy chain is a method of connecting interrupts so that any active interrupt causes a logic 1 to be placed on
the INTR input to the microprocessor. The daisy chain interrupt requires software to determine which inter-
rupt is active.

36. The 8259A is a programmable interrupt controller that adds eight interrupt inputs to the microprocessor.
38. The IR inputs are the interrupt request input to the 8259A.
40. The slave INT pin connects to any IR pin on the master 8259A.
42. The OCW is an operational command word used to control the 8259A once it has been initialized by the ICW.
44. ICW2
46. ICWI1, among other things, selects the level or edge
triggering for the 8259A. vee
48. The priority rotation algorithm places the most recently
serviced interrupt at the lowest priority level. 1K
oow
2 _11a1 1 D7
CHAPTER 12 R 1E
1A4 1Y4 D4
])) » 2A1 2vi -2 p3
2. Whenever HOLD is placed at a logic O level, the micro- E|22 2v2 D2
processor (a) stops executing a program within a few 7_l2na 2v4 3 po
clocks, (b) places its address, data, and control buses at WNTa ! ;g
their high-impedance state, and (c) places a logic 1 on SeALSon

S

10.
12.
14.

the HLDA to signal that the HOLD is in effect.

A DMA write transfers data from I/O to the memory.
DACK

If both HOLD and HLDA are a logic 1 level, the micro-
processor is in its hold state.

FIGURE D-11

4

The command register

LATCHB EQU 10H ;latch B

CLEAR_F EQU 7CH ;F/L flip flop
CHO_A EQU 70H ;channel 0 address
CH1_A EQU 72H ;channel 1 address
CH1_C EQU 73H ;channel 1 count
MODE EQU 7BH ;mode

CMMD EQU 78H ; command

MASKS EQU 7FH ;masks

REQ EQU 79H ;request register
STATUS EQU 78H ;status register

TRANS PROC FAR USES AX

MOV AL, 20H
SHR AL, 4
ouT LATCHB, AL

ouT CLEAR_F,AL ;clear F/L flip-flop
MoV AX,1000H ;program source address
ouT CHO_A,AL

MOV AL, AH
ouT CHO_A, AL

MOV AX,0000H ;program destination address

764 APPENDIX F ANSWERS TO SELECTED EVEN-NUMBERED QUESTIONS AND PROBLEMS

OouT CH1_A,AL
MOV AL, AH
ouT CH1_A,AL

MOV AX, OOFFH ;program count
ouT CH1_C,AL

MOV AL, AH

ouT CH1_C,AL

MOV AL, 88H ;program mode
ouT MODE, AL
MOV AL, 85H
ouT MODE, AL

MOV AL, 1 ;enable block transfer

ouT CMMD, AL

MOV AL, OEH ;unmask channel 0

ouT MASKS, AL

MOV AL, 4 ;start DMA transfer

ouTr REQ, AL

.REPEAT ;wait until DMA complete
IN AL, STATUS

.UNTIL AL &1

TRANS ENDP

CHAPTER 13

BSwoahsn

|
1

The early ISA bus supports only 8-bit transfers, while the newest supports either 8- or 16-bit transfers.
12M bits per second and 1.5M bits per second

5 Meters

127

A stuffed bit is a logic 0 placed in a data stream after a fixed number of ones are transmitted.

Up to 1024 bytes

CHAPTER 14

2.

N OB

—

14.
16.
18.

20.
22.
24.
26.

The 80186/80188 contain an internal clock generator, chip-selection logic, timers, programmable interrupt
controller, DMA controller, power-down mode, serial interfaces, and parallel interfaces. Note that not all
versions contain all features.

10 MHz

3.0 mA of current for a fan-out 7 TTLS parts or 10 CMOS components

The ALE signal appears Y2 clock earlier in the 80186/80188.

417 ns

MOV ' AX,1100H

MOV DX, OFFFEH

OUT DX,AL

Ten on most versions of the 80186/80188, including all the internal interrupts.

The interrupt-control registers each control a single interrupt input to the 80186/80188 interrupt controller.
The difference is that reading the interrupt poll register acknowledges the interrupt, while reading the inter-
rupt poll-status register does not. ’

3 -

Timer 2 always connects, and Timers 0 and 1 can be connected to the system clock.

The INH bit must be set to allow the EN bit to change.

Alternate operation using the two compare or maximum count registers.

ANSWERS TO SELECTED EVEN-NUMBERED QUESTIONS AND PROBLEMS 765

28.

30.
32.

34,
36.
38.
40.
42,

44.

MOV AX, 123
MOV DX, OFF5AH
ouT DX, AL
MOV AX, 23
ADD DX, 2
ouT DX, AL
MOV AX,8007H
MOV DX, OFF58H
ouT DX, AL

2

The channel is started by software control (control register) or by hardware control (timer 2 or the DRQ
input).

7

Base

0 and 15

It selects the operation of the PCS5/A0 and PCS6/A1 pins.

MOV DX, OFF90H
MOV AX,1001H
ouT DX, AL
MOV DX, OFF92H
MOV AX,1008H
ouT DX, AL

It verifies that a protected mode segment can be read.

CHAPTER 15

>

10.

64T

See Figure D-12

The memory map for the 80386 contains 4G bytes of memory that is physically organized into a 32-bit wide
memory system. Each of the four eight-bit wide memory banks is selected by using a bank enable signal la-
beled BEO-BE3.

The pipeline allows the microprocessor to send out an address while the data from a prior operation is being
fetched. This allows the memory additional time for accessing the data.

0000H-FFFFH

000FFFFF Protected
Mode
Memory
Real Mode Map
Memory Map
00000000 00000000

FIGURE D-12

766 APPENDIXF ANSWERS TO SELECTED EVEN-NUMBERED QUESTIONS AND PROBLEMS

12. The only differences are a wider data bus (32 bits) and a wider address bus (32 bits).

14. The BS16 pin configures the microprocessor to operate with a 16-bit data bus.

16. EAX, EBX, ECX, EDX, WSP, EBP, ESI, EDI, EIP, and EFLAGS.

18. CRO = selects paging, and enters or leaves the protected mode, CR1 = reserved for the future, CR2 = holds the
linear address of any fault, and CR3 = holds the base address of the page directory.

20. Interrupt type 1

22. The BSR instruction scans a number from the right toward the left. If a 1 is found, the zero flag is set and the
bit position of the logic one is placed into the destination register.

24. MOV FS:[DI},LEAX

26. Yes

28. Interrupt type number 7 is used to emulate the arithmetic coprocessor.

30. A double fault interrupt occurs whenever more than one interrupt occurs within the microprocessor.

32. A descriptor is a sequence of eight bytes that describe the location, length, and attributes of a protected mode
memory segment.

34. If the table indicator is a logic 1, the local descriptor table is chosen by the segment register.

36. 8192

38. The segment descriptor describes a data, code, or stack segment, while the system descriptor describes a
CALL or interrupt gate or a task.

40. The TSS is addressed by a special descriptor that is accessed by the task register.

42. The 803786 is switched between real and protected mode by setting or clearing the rightmost bit of CRO.

44. CR3 holds the base address of the paging directory.

46. Linear address DOOOOOOOH addresses a physical page by accessing page directory entry 1101000000. In this
entry, the address of the page table that describes 4M of memory is located. Page table entry 0000000000
holds memory address COO00000H to translate linear address DOOOOOOOH to COO00000H.

48. The FLUSH input erases the internal 80486 cache.

50. None, except for the 80486SX, which contains an alignment check flag used by the arithmetic coprocessor
(80487).

52. Even parity

54. 16

56. A cache write-through occurs when the microprocessor writes data to the cache and to the memory system.

58. If paging is in effect, caching can be turned on and off for different page translations.

60. This instruction does nothing if AL = CL; if AL ®CL, then CL is copied into AL.

62. If PCD = 0, the cache is enabled for the current memory page.

CHAPTER 16

2. Up to 64G bytes.

4. These pins both generate parity for the ninth bit per byte and also check parity.

6. This pin signals the microprocessor that the bus is ready and is used to insert wait states into the timing.
8. 182 ns

10. T2

12. Two 8K-byte caches, one for data and the other for instructions.

14. Yes, as long as they are not dependent on each other.

16. The memory management mode is a special mode accessed through the memory management interrupt input
to the Pentium and Pentium Pro.

18. 38000H

20. This instruction compares eight bytes of data stored in memory with EDX:EAX.

. ID, VIF, and VIP

ANSWERS TO SELECTED EVEN-NUMBERED QUESTIONS AND PROBLEMS 767

24.

26.

28.

30.

32.

The Pentium and Pentium Pro access 4M-byte pages by using the page directory to store the base page ad-
dress of a 4M-byte memory page instead of the address of a page table.

The Pentium and the Pentium Pro differ in address bus size (32 bits versus 36 bits on the Pentium Pro), the
FCMOV and CMOV instructions are added to the Pentium Pro, and the Pentium Pro contains the level 2
cache with a size of either 256K or 512K bytes.

A35-A3

The access times are essentially the same on both microprocessors if operated with the same frequency bus
clock.

72-bit wide SDRAM called ECC SDRAM

CHAPTER 17
2. 512K, 1M, and 2M
4. The Pentium Pro level 2 cache is built into the integrated circuit, while the Pentium II level 2 cache is a sepa-
rate integrated circuit mounted onto a printed circuit board called the Pentium II cartridge.
6. 64G bytes
8. 242
10. The read and write pins are replaced by request input used by the bus controller to request a read or a write op-
eration.
12. 8ns
14. SYSENTER_CS, SYSENTER_SS, and SYSENTER_ESP
16. The ECX register passes the address or register number to the RDMSR instruction. After executing the
RDMSR instruction, EDX:EAX contains the contents of the register.
18. TESTS PROC NEAR
CPUID
TEST EDX, 800H ;test bit position 11
.IF ZERO?
CLC
.ELSE
STC
.ENDIF
RET
TESTS ENDP
20. The return address is retrieved, placed in EDX, and then stored in EIP by the SYSEXIT instruction.
22. Level or ring 3
APPENDIX D
2. 16-bit (£32K), 32-bit (+2 G), and 64-bit (£9 = 10'%)
4. Short (32-bits), long (64-bits), and extended (64-bits)
6. (a) 7.5 (b) +0.5625 (c) +320 (d) +2.0 (e) +10 (f) +0.0
8. The FST DATA instruction copies (does not pop) data from ST(0) into memory location data as a 64-bit
floating-point number.
10. FADD ST,ST(3)
12. FSUB ST(2),ST
16. The FSAVE instruction saves all of the register in the coprocessor to memory.
18. REAC PROC NEAR

FLDPI
FADD ST, ST(0)
FMUL F

768

APPENDIX F ANSWERS TO SELECTED EVEN-NUMBERED QUESTIONS AND PROBLEMS

FMUL c1l
FLD1
FDIVR
FSTP Xc
RET

REA” ENDP
22.POW PROC NEAR

POW

MOV TEMP, EBX
FLD TEMP
F2XM1

FLD1

FADD

MOV TEMP, EAX
FLD TEMP
FYL2X

FSTP TEMP
MOV ECX, TEMP
RET

ENDP

APPENDIX E

2.

'

10.
12.

14.
16.

A study of the most often used instructions revealed that most of the instructions are not used. This led to the
Reduced Instruction Set.

. The Data Manipulation Type.

They become smaller as the complex instructions are removed. Complex instructions need more control sig-
nals/machine cycles.

. Control Area is the area on the chip used by Control Unit. Regularization Factor is the ratio of the modules

drawn from a library to the total modules on the chip.

For a 6 machine cycle the depth of pipeline is 6.

After 6 clocks the 1st instruction would have been completed and after every clock one instruction would be
completed. The number of instructions to complete is 5, after the first one came out; so 6+5 clocks would be
needed to complete the 6 instruction execution.

ALPHA 21064

SPARC

